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Chapter 1

Introduction

1.1 Motivation and background

The optimal operation of industrial processes has become increasingly important in
recent years. In the current global social and economic environment, in order to re-
main competitive, the process industry continuously needs to lower production costs,
increase product quality and consistency, while adhering to ever stricter environmental
norms. One possibility to reach these objectives is to optimize the process operation
by exploiting all available knowledge about the process.

Efficient process operation requires good process design. Before being operated,
the process has to be designed such that it has enough potential to meet the target spec-
ifications and requirements. Apart from the process design itself, the instrumentation
should be sufficient to obtain the maximum performance from the process design.
Enough sensors should be placed to measure process variables with enough accuracy
such that the process can be monitored adequately. Enough actuators should be avail-
able placed at the right locations in order to be able to efficiently steer the process to
its optimal working point and to reject any disturbances.

Once the process has been designed, it must be operated in an optimal manner in
order to reach the required performance. A prerequisite for the optimal operation of a
process is the availability of a monitoring tool.

In this thesis we shall define monitoring as online estimation of the state of the
process using measured inputs and measured outputs of the process. System and con-
trol theory defines the state of the system as a time varying vector of fixed dimension
that together with the process model and current inputs contains sufficient information
to provide the best possible prediction for future process states and outputs [23]. The
state vector has to be estimated since it is often impossible to measure it directly.

Apart from the fact that knowledge of the status of the process is valuable to pro-
cess operators, monitoring enables techniques such as fault detection and isolation and
advanced automatic control.

Fault detection attempts to detect deviations from normal process behavior. These
deviations from normal process behavior are called faults. Fault detection only detects
whether a fault has occurred. Faults can occur for any number of reasons. For instance
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2 1 Introduction

a fault could be caused by faulty sensors or faulty actuators. Fault isolation algorithms
determine among a number of candidate faults, which fault has occurred. Fault detec-
tion and isolation algorithms are important for any automatic process control imple-
mentation. Obviously, if process operation is based on erroneous measurements or a
bad process model, results will be far from optimal. For fault detection, knowledge of
the state of a process is important, because the process state together with input of the
process can be used to predict future process outputs. Many fault detection algorithms
are based on the statistics of the difference between the predicted measurements and
the actually obtained measurements.

Currently available advanced optimal control algorithms can be used to compute
the required input signals to move the process to an optimal operation region as effi-
ciently as possible, while rejecting process disturbances. Knowledge of the process
state is also important for control applications. If the current state of the system is
known, predictive control algorithms can be used to compute inputs for the process
such that the predicted process behavior minimizes a predefined cost function, while
adhering to the constraints of the process.

Summarizing, monitoring is an important tool that enables efficient process op-
eration, because it provides operators with online information about the current state
of the system and enables the use of advanced fault detection and isolation and ad-
vanced control algorithms. As already mentioned, monitoring consists of estimating
the state vector. To perform this estimation online a state filter is used. A state fil-
ter indeed produces estimates of the current state of the process, using known inputs,
sensor measurements and a process model.

We have established that to enable near optimal operation of an industrial process,
an algorithm for state estimation is required. Apart from this requirement, the extent
in which the optimal operation of the process can be obtained is also dependent on the
plant model used for process operation.

With the recent increases in computer speed it has become possible to construct
detailed first principles models, even for complex industrial processes. These models
can provide an accurate description of the process under consideration. The states and
parameters in these models have a direct physical interpretation. Simpler processes
can sometimes be modelled with relatively simple models. To accurately model more
complex industrial processes, very complex nonlinear models are generally required.
The dimension of the state vector of these complex models is generally very large.
The time required for simulation is often in the same order as the simulated interval.
These last two properties have prevented the use of these complex models for state
estimation and other online applications.

To circumvent some of the problems of overly complex first principles models of
industrial processes, a different modelling approach has attracted attention. Instead of
modelling the process using first principles relations specific to the process to be mod-
elled, broadly applicable black-box model structures are considered to describe the
process behavior. Parameters in the model structures are determined from experimen-
tal process data using identification techniques [56]. An advantage of these type of
models is that the structure of the used black box models is often much simpler than
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model structures that are obtained by first principles modelling. The computational
burden of the models is low enough, so that they can be used for online state estima-
tion, and other process applications. Unfortunately, because the model structures used
are so general, it is difficult to assign a physical meaning to states and parameters of
black box models. As a result, a black box model may provide reasonable description
of a process’ input to output behavior, it provides little to no insight in actual process
conditions, limiting its use for process monitoring.

Currently the situation found in the process industry is that the simpler black box
models are used for the daily operation of the plant, while complex first principles
models are only used for offline simulation experiments and process design.

Improved results in process operation could likely be achieved if it would also be
possible to use large scale first principles models in online process applications. The
main reason for the expected increase in performance is that the state in a detailed
first principles model represents a detailed physically interpretable description of the
process. For fault detection and isolation applications, this means that more detailed
analysis of unexpected process behavior is possible. For monitoring, using first princi-
ples models will give operators valuable detailed insights of current physical operating
conditions. In control applications, using first principles models opens the possibil-
ity of not only controlling the process on an input-output level, but to use far more
sophisticated control objectives based on the state of the system.

To enable the use of the large scale first principles models, it should at least be
possible to construct a state filter and fault detection algorithms based upon these
models.

1.2 State estimation using large scale first principles
models

1.2.1 Introduction

As discussed earlier, the availability of a monitoring tool using a detailed first princi-
ples models can assist to optimize a process’ behavior. As already mentioned, in order
to estimate the state of a system online a state filter is required. Designing such a filter
for complex detailed first principles models is far from trivial. To highlight some of
the difficulties involved, we will first discuss some common properties of detailed first
principles models in the process industry. Then we will present methods to design
a state filter for relatively simple models. We will argue that popular state filters for
simpler models are not feasible for more complex and detailed first principles models.
Finally it will be shown that even specialized state filters for large scale models from
related fields such as climatological modelling are not directly applicable.
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1.2.2 General properties of first principles models of large scale
industrial processes

Processes that are currently in use throughout the process industry are very diverse.
However, most processes do have at least three properties in common. First of all,
most processes in the process industry are MIMO (multiple input multiple output)
processes. The number of input actuators and output measurements is often larger
than five. Secondly the dynamic input to output behavior is generally nonlinear. This
means that the process will react differently in different operating points. Finally,
the sampling interval of industrial processes is in general in the order of a minute.
Of course, processes with very fast behavior may be sampled faster and processes
with very slow behavior may be sampled slower, but in general, the sample times
encountered in the process industry are in the order of a minute.

First principles models of large scale industrial processes are often derived using
partial differential equations (PDEs) describing the physical and chemical processes
within the plant. These equations, together with appropriate boundary and initial con-
ditions form an implicit model of the plant. For process monitoring and control, an
explicit model is required. This model can be derived from the implicit PDE model
using techniques such as finite elements or finite differences [68]. This technique im-
poses a fine grid in the spatial dimensions. In each grid element, the process conditions
are assumed constant. Using this approximation, the original implicit PDE model can
be approximated by an explicit state-space model consisting of a set of ordinary differ-
ential equations (ODEs). This ODE model contains an ODE for all process variables
in each grid element. The state of the first principles model is a vector containing all
the process variables for each grid element. To get an accurate approximation to the
implicit PDE model, the grid needs to be very fine. Thus the explicit ODE model
that should be used for monitoring and control applications will consist of a very high
number of ODEs and have a very large state dimension. State dimensions >> 10 5

are not uncommon. When using this model for simulations, the time required to solve
the ODEs is often in the same order as the time interval over which the process is
simulated.

It should be noted that process models derived in this manner can often very ac-
curately predict the undisturbed process behavior. However, models derived using the
described methodology do not contain a description of the properties of possible pro-
cess disturbances and how these disturbances might alter the behavior of the plant.
Also, this type of modelling does not include a description of the errors that occur
during the measurements.

In the next sections the difficulties in designing a state filter for these type of
models will be discussed. It will be shown that in theory methods to estimate the state
of relatively simple models could still be used to estimate the state of the described
large-scale first principles models. In practice however, none of the known methods
can be implemented due to computational issues associated with the use of detailed
first principles process models.
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1.2.3 General state estimation techniques for nonlinear models used
in the process industry

The most common state filter currently used in the process industry is the EKF (Ex-
tended Kalman Filter) [3][42]. The EKF is a generalization of the celebrated Kalman
filter [47]. The Kalman Filter is the optimal state estimator in the least squares sense
for linear models if both the process disturbances and measurement errors are stochas-
tic variables, with a known Gaussian distribution. The Kalman Filter consists of two
steps. In the first step the next future state and output measurements are predicted,
and for each prediction an error covariance matrix is computed. This step is often
referred to as the time update. Once the next output measurement becomes available,
the filter refines the previous state predictions using the difference between the pre-
dicted and actually observed output. This step is often referred to as the measurement
update. For the computations in both the time update and the measurement update, the
Kalman filter uses the assumption that the model is linear. For process models in gen-
eral, this will not be the case. To overcome this problem the EKF has been developed.
The EKF is a modified version of the Kalman filter in which the available model is
linearized with respect to the state of the model during both the time update and the
measurement update. After the linearization of the model, the usual Kalman equations
can be used for both the time update and the measurement update. Since an analytical
expression for the required linearization is usually unavailable, the required deriva-
tives are computed numerically. Numerical approximation of the required derivative
for first principles models requires at least a model evaluation for every state element.
This procedure takes far longer than the sampling interval, thus making online im-
plementation of the EKF impossible. Even if the linearization of the first principles
models could be computed well within a sampling interval, there is a second prob-
lem preventing the online implementation of an EKF using a complex first principles
model. The EKF requires manipulations with square covariance matrices which have
the same dimension as the state of the model. For a lot of detailed models even storing
these matrices in computer memory is a big problem. Performing manipulations on
these matrices, such as inverting them, is practically impossible.

Even though the EKF is an obvious extension of the Kalman filter (which is opti-
mal in the least squares sense for linear models), the EKF can produce state estimates
that are far from optimal as the nonlinearities in the process behavior become more
pronounced [78][82][98]. To better handle nonlinear models, several other filters have
been developed, such as the UKF (Unscented Kalman Filter) and the MHE (Moving
Horizon Estimator).

The UKF (Unscented Kalman Filter) [44] is a state estimator which is closely re-
lated to the EKF. Instead of computing the required state and output predictions and
covariances using linearizations of the process model, the UKF computes the required
predictions and associated covariance matrices by experimentally mapping specifi-
cally selected points through the process model using simulations. This procedure
requires approximately two model evaluations per state element, process disturbance
and measurement error. Compared to the EKF, the estimates produced by the UKF
can be far more accurate, but computing the estimates requires approximately twice
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the computational effort. As a result using the UKF as a state estimator using complex
first principles models is computationally not feasible.

Another state filter that is used in the process industry is the MHE (Moving Hori-
zon Estimator) [79]. The MHE computes the current state estimate as a solution of
a least squares problem. For linear systems, it can be shown that the solution to this
least squares problems is equivalent to the state estimate of the Kalman Filter. The
advantage of the MHE approach is that the solution is computed using numerical op-
timization tools. These optimization tools can incorporate the physical constraints of
the system to ensure that the resulting state estimate always has a physically mean-
ingful result. Obvious limitation of MHE is that it requires solving a least squares
problem involving the large scale first principles process model, which requires far
more computational effort than computing state estimates using the EKF or UKF.
To alleviate the computational burden of the required optimization problem, several
methods using either sensitivity equations or adjoint models can be used [80][59]. For
these techniques additional model equations need to be derived. Even with adjoint and
sensitivity based techniques, the optimization problem in the MHE is far too complex
to be solved within the sampling interval, thus preventing the practical application of
the MHE using a large scale first principles process model.

The problems of implementing an online state filter can be partially addressed
using projection based model reduction techniques. Examples of currently popular
projection based techniques are POD (Proper Orthogonal Decomposition) and empir-
ical nonlinear balancing [4][51]. These projection based model reduction techniques
utilize the property that under normal process conditions the state of the process gen-
erally resides within a relatively low dimensional subspace of the high dimensional
state-space. This property of most industrial processes can be exploited to build an
approximate model that has a much lower state dimension. For linear models, de-
crease in model order directly also results in a reduction of the CPU time required per
model evaluation. For nonlinear models however, it can be shown that simulations
using the lower order approximation of the large scale model still requires the same
amount of computing time [92]. So for nonlinear models reducing the model order
will also reduce some of the computational complexities (e.g. number of model eval-
uations in the EKF or UKF) to compute a state estimate, but each model evaluation
still requires approximately the same computation time as the original model; com-
puting time which is approximately equal to the sampling interval. This prevents the
use of traditional nonlinear state filters such as the EKF, UKF and MHE, even using
reduced order nonlinear models. An overview of model reduction methods and their
use in the field of process control is given in [63][92].

Apart from the computational infeasibilities preventing the design of an efficient
state filter, first principles models often do not provide all the necessary knowledge to
design an optimal state filter. While first principles models often describe the deter-
ministic behavior of a plant in great detail, they often provide little to no information
about the distribution of process disturbances and measurement noise. Unfortunately
these distributions are required to design an efficient state filter. The lack of a model
for process disturbances and measurement noise thus forms another obstacle for the
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implementation of state estimation techniques.
Another problem that is likely to cause problems when implementing any of the

state estimators described above, is that the process behavior tends to change over
time, causing the behavior predicted by the model to become biased. The change in
process behavior can for instance be caused by wear of parts. If the process mod-
els become biased, state estimators using these models will generally return biased
estimates.

Since advanced state estimation techniques such as the EKF, UKF and MHE can-
not be used for large scale first principle models, sub-optimal techniques are often
used. In these techniques the state estimation problem is often solved by replacing the
complex first principles model with a (reduced order) linearized model for the purpose
of designing a state filter. The state estimator is often a simple fixed gain observer (see
[59]), which is often tuned manually to improve performance [61][64].

Summarizing we saw that existing techniques for state estimation, such as EKF,
UKF and MHE cannot be implemented directly for large first principles process mod-
els mainly due to computational issues caused by the large state dimension and the
relatively long computational time required for a model evaluation. Of these prob-
lems, only the problem of a high state dimension can be solved using empirical model
reduction techniques. The CPU time per model evaluation for a reduced order models
is not significantly affected by the model reduction. Besides the computational issues,
another issue preventing the using of first principles model for state estimation, is the
lack of a model for the expected process disturbances. Finally, commonly used state
estimation methods do not have methods to perform online calibration of the process
model.

1.2.4 State estimation techniques in other fields

Environmental modelling

The need for good state estimation algorithms is not unique for the process industry.
In other fields, different aspects of the state estimation problem for complex first prin-
ciples models are also encountered. For instance, state estimation using large scale
first principles models is a crucial technology in the field of environmental modelling.

First principles models of the environment are for instance used to model the
weather. Other environmental models are used to estimate the distribution of smog
particles [35] or to estimate currents in the oceans [38]. First principles environmen-
tal models have a lot in common with first principles process models. Both types of
models are generally nonlinear, and the state dimension is very high. As such, state
estimation techniques developed in this field of research should also be considered
for use in combination with first principles process models. An important difference
between environmental models and process models is the sample interval. For envi-
ronmental models the sampling interval is usually in the order of hours. This is much
longer than the sampling interval encountered in process applications.

A currently very popular state estimator for environmental models is the EnKF
(Ensemble Kalman filter) [28]. The EnKF is a modified version of the EKF, such
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that in order to compute both the time update and the measurement update it is no
longer required to linearize the available model. Instead the EnKF computes the re-
quired predictions and associated error covariance matrices using Monte Carlo sim-
ulations. Good results usually require that approximately 50 to 100 simulations are
computed per sampling interval. This is significantly less than the (at least) thousands
of simulations required to numerically compute the linearization of a first principles
environmental model.

Another state estimation technique that has been proposed for state estimation for
atmospherical models is the RRSQRTKF (Reduced Rank Square Root Kalman Filter)
[97]. Like the EnKF, the RRSQRTKF is a modified version of the original EKF. The
RRSQRTKF solves the problem associated with the computation of the large error co-
variance matrices by using lower rank approximations of the required error covariance
matrices. The rank reduction is performed by using a singular value decomposition.
Because the RRSQRTKF uses a reduced rank approximation, it can be shown that it
no longer required to compute a full linearization of the model. This limits the num-
ber of model simulations that are required per sampling interval. Experience with
the RRSQRTKF shows that in practice good results require at least a rank 30-50 ap-
proximation of the error covariance matrices. Using finite difference to compute the
required linearization of the first principles model thus requires at least 30-50 model
simulations per sampling interval. This is often impossible in process applications.

The final state estimation technique commonly encountered in environmentalmod-
elling applications is referred to as the 4DVar method [19][53]. This method is very
similar to the MHE technique described earlier. In both methods, the state estimate is
obtained by solving a least squares optimization problem. Because of the larger sam-
pling interval commonly encountered in environmental applications, the optimization
problem can be solved on time using adjoint techniques.

While in all of these methods a dramatic decrease in required computational com-
plexity is observed, the number of required simulations per sampling interval is still
much too large for application in the process industry.

Particle filters

Besides the different filters already discussed in this section, particle filters (also re-
ferred to as sequential Monte Carlo estimators), are often used to estimate the state of
the system [24]. Particle filters are for instance used in the field of automated naviga-
tion. In this field, an autonomous vehicle uses state estimation to track its own position
[34]. Like the state estimation problem for industrial processes, the models used for
state estimation are generally nonlinear. Instead of approximating the best linear es-
timator for a nonlinear problem like all Kalman based filters, a particle filter attempts
to reconstruct the complete probability density function of the state given all available
measurements, by conducting Monte Carlo simulations with the process model. The
estimated probability density function converges to the true probability density func-
tion as the number of Monte Carlo simulations tends to infinity. The reconstructed
probability density function can be used to compute the conditional expectation of
the system state. Using the estimated probability density function of the state of the
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system, it is possible to compute a state estimate. Application of particle filters in
the literature show that required number of Monte Carlo runs to obtain good results
is often quite large (>> 50). Once more, this prevents the use of particle filters for
estimating the state of first principles process models.

1.3 Problem formulation

The overview given in the previous sections indicates that although a lot of state es-
timation techniques can already be found in the literature, no technique is currently
able to produce reliable online state estimates using detailed first principles process
models. The lack of such a state estimator limits the possibilities of using detailed
first principles process models for monitoring and all further applications that require
the presence of accurate state knowledge.

These observations have inspired the following central problem formulation for
this thesis:

Develop a computationally feasible method for the efficient use of large
scale physical models in model based monitoring, fault detection and
control of industrial processes.

The to be developed method is required to be computationally feasible. By this we
mean that the method can be implemented online using general purpose computers.

The sought methodology is also required to be efficient. This means that the
methodology should estimate the state with an accuracy approaching the theoretical
optimal accuracy in the mean least squares sense.

Since the first principles models used in the process industry are very diverse, our
methodology should not focus on the use of selected models. Instead, the methodol-
ogy should be broadly applicable.

1.4 Solution strategy

From the discussing in section 1.2 we can identify four main obstacles for developing
the methodology as described in section 1.3:

• The state dimension is very large.

• The simulation time is of the same order as the simulated interval.

• The models lack a description of disturbances and measurement noise.

• The models may need to be recalibrated during operation.

In order to develop the methodology as described in section 1.3, we will address
each of these obstacles separately.
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The first problem concerns the very large state dimension. This problem can be
solved by applying available model reduction techniques that are already present in lit-
erature. Using these techniques an approximate model is constructed that reduces the
state dimension to reasonable magnitudes, while retaining the physical interpretation
of the state.

The second obstacle concerns the simulation time of large scale first principles
model. While computational issues related to the state dimension of a model can be
solved by existing model reduction techniques, no generally applicable techniques ex-
ist that can significantly reduce the computational burden to perform simulations with
the first principles model, while retaining the physical interpretation of the model
states and parameters. If such a technique would be available, it would become possi-
ble to use existing techniques to estimate the state of the system. Apart from enabling
state estimation techniques, faster models could also be used in fault detection and
control tasks.

Once the computational issues preventing the use of state estimation techniques
have been solved, there is still the problem that first principles models tend to lack an
accurate description of the noises and disturbances. Since it is apparently difficult to
model disturbances and noises a priori from first principles, noise models should thus
be constructed from actual measurement data, using identification techniques.

Finally, since process behavior changes over time, it is also necessary to update
the model online. The process model can be calibrated, by estimating certain pro-
cess parameters using available data. Unfortunately continuous estimation of process
parameters will lead to increased variance of state estimates. An algorithm is thus
required that only calibrates the process model when available data suggest that re-
calibration is necessary.

1.5 Overview of thesis contents

Chapter 2 contains a short summary of elements from state estimation and model
reduction theory. The first part of the chapter starts by presenting the state estimation
problem and its formal solution using Bayes conditional probability theory. Apart
from the theoretical solution, several practical algorithms are presented for both linear
and nonlinear models. The second part of chapter 2 contains elements from model
reduction theory. In particular, this part describes projection based techniques such as
Proper Orthogonal Decomposition and Balancing.

In chapter 3 addresses the problem of the simulation time of large scale first prin-
ciples models. The main contribution of this chapter is that two methodologies are
presented to construct a model that approximates the original first principles process
model, but has a significantly reduced simulation time per model evaluation. The
approximate models use the same state as the original first principles models, thus
retaining the physical interpretation of the state variables.

Chapter 4 considers the problem of how a near optimal state estimator can be
constructed when no information is available on the distribution of the process dis-
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turbances and measurement errors. Specifically we consider methods to identify an
optimal filter using measured input and output data from the process. Especially for
linear models several methods to identify a near optimal filter have been published
in the literature. This chapter considers the covariance method introduced by Mehra
[66]. The contributions of this chapter are twofold. First, in an analysis of Mehra’s
method, it will be shown that although the method has several favorable properties,
it can easily produce poor state estimates for the class of poorly observable systems.
Secondly, a improved version of Mehra’s covariance method is presented that is more
robust, especially if the process is poorly observable.

Chapter 5 addresses the problem of how the process model should be adjusted on-
line. It is shown that the problem of determining when a model has to be recalibrated
can be written as a model selection problem. Main contribution of this chapter is that
the model selection problem is solved by adapting techniques from model selection
for system identification to model selection for filtering.

In chapter 6 the theory of the preceding chapters is applied in a simulation study.
In this simulation study the goal is to estimate the state of the dryer section of a paper
production plant. In this case study a detailed first principles model was provided by
TNO Science and Industry.

Chapter 7 contains conclusions and recommendations for further research.
Most results in this thesis have already been published in the form of conference

papers. Results of chapter 3 are also contained in [13] and [11]. The main results
of chapter 4 have been presented in [12]. Finally, the results of chapter 5 have been
published in [14].





Chapter 2

State estimation and model
reduction

2.1 Introduction

This chapter introduces basic concepts from the literature that will be used in the fol-
lowing chapters of this thesis. This chapter can be divided into three main sections.
The first section discusses the assumptions on the available first principles process
models that are available for monitoring. In the second section important elements
from state estimation theory are discussed. The final section of this chapter provides
a brief overview of projection based model reduction techniques relevant for this re-
search.

2.2 Process model

The process models that will be considered throughout this thesis are so-called first
principles models. Such models contain all available chemical and physical insights
into the considered process.

Since these models are to be used for monitoring and control purposes, it is gener-
ally convenient to reformulate the model such that it has the discrete time state-space
form:

x(k+1) = f (x(k),u(k),w(k)) (2.1)

y(k) = h(x(k),u(k),v(k)), (2.2)

in which x(k) ∈ R
nx×1 is the state vector of the system at time index k ∈ Z, u(k) ∈

R
nu×1 is a vector with known inputs, w(k) ∈ R

nw×1 is a vector containing unmeasur-
able process disturbances, y(k) ∈ R

ny×1 is a vector containing the measurements at
time k and finally v(k) ∈ R

nv×1 is a vector containing the measurement errors at time
index k. Finally the functions f (·) and h(·) relate the current state and inputs to a
subsequent state vector and output vector, respectively.

13
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Unfortunately, most first principles models are not directly available in the discrete
time state-space form. Instead these models are generally available only as a set of
partial differential equations. As an example of such a PDE consider the following
generic PDE describing the flow of some scalar physical quantity x(r,t) as a function
of location r (one dimension) and time t:

L

�
x(r,t),

∂x(r,t)
∂ r

,
∂x(r, t)

∂ t

�
= 0, (2.3)

in which L(·) is an arbitrary PDE. Note that in contrast to the discrete time state-space
model both the spatial coordinate r and the time index t are continuous variables. A
PDE such as (2.3) often cannot be solved analytically. Instead the equations are thus
solved using numerical methods such as finite differences or finite elements [26][68].
Both methods first impose a fine spatial grid over the physical quantity x(r, t). In each
cell of the imposed spatial grid, the physical quantity x(r,t) is assumed uniformly
distributed. As a result we can rewrite the scalar spatial distribution of x(r,t) as a
vector:

x(r,t) → x(t) =

�
����

x(r1,t)
x(r2,t)

...
x(rN ,t)

�
���� (2.4)

in which r1,r2, . . . ,rN are the locations of all the grid cells. The derivatives with
respect to the spatial coordinate r can now be removed from the PDE (2.3) using a
finite difference approximation. The finite difference approximation assumes that :

∂x(r,t)
∂ r

����
r=rk

≈ x(rk+1,t)− x(rk,t)
rk+1 − rk

. (2.5)

Substituting this approximation into (2.3) results in a continuous time ODE. This ODE
can in turned be solved using various ODE solvers to result in a discrete time model
of the form (2.1)-(2.2). In the resulting model the vector x(t) is in fact the state vector.

Note that the dimension of the state vector is proportional to the number of grid
elements to approximate the PDE with an ODE. For reasons of accuracy, the number
of grid cells is chosen high, which in turn causes the high state dimension of many
first principles process models.

Apart from the model equations specified by f (·) and h(·) a description of the
expected type of disturbances w(k) and measurement errors v(k) are also required for
monitoring. In this thesis it will be assumed that both w(k) and v(k) can be modelled as
realizations of stochastic processes with known distributions. Mostly we will assume
that both w(k) and v(k) are Gaussian white noise processes with known covariances:

E

	

w(k)
v(k)

��
= 0 (2.6)

E

	

w(k)
v(k)

�
[w(l)T v(l)T ]

�
=



Q(k) S(k)
S(k)T R(k)

�
δ (k− l), (2.7)
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in which E{·} is the expectation operator and δ (k− l) is defined as:

δ (k− l) =
	

0 if k �= l
1 if k = l.

(2.8)

Note that for the remainder of this thesis it is not required that an explicit model
of the form (2.1)-(2.2) is available. It is sufficient that model evaluations of (2.1)-(2.2)
can be computed.

2.3 State estimation

2.3.1 State estimation problem

State estimation problem

In order to obtain accurate knowledge of the state vector and its evolution, one option
would be to perform online measurements of the state of the system. Unfortunately,
the state vector can only rarely be measured directly. As a result, the only method
to (approximately) obtain the current state of the system is to estimate the state of
the system using all known inputs u(k) and available measurements y(k). Indeed, the
state x(k) is related to both inputs u(k) via the state equation (2.1) and outputs y(k)
via the measurement relation h(·) (see (2.2)). In this section the current state of the art
in state estimation techniques will be discussed. Before discussing the various state
estimation techniques we will first provide a more mathematical formulation of the
state estimation problem. Denote all known input and output data available at time k
as Zk:

Zk = [u(1), y(1), . . . , u(k), y(k)]. (2.9)

Using all available data and the available process model, the state estimation problem
consists of finding an estimator x̂(k,Zk) of x(k) that minimizes a chosen criterion
function C(x(k)− x̂(k,Zk)). By far the most common criterion used in the literature is
the mean square error (MSE):

C(x(k)− x̂(k,Zk)) = E{


k

‖x(k)− x̂(k,Zk)‖2} (2.10)

in which the norm ‖ · ‖· is defined as:

‖x‖2
P = xT Px. (2.11)

General solution

For the MSE criterion (2.10) it can be shown that the optimal estimator x̂(k,Z k) is [3]:

x̂(k,Zk) = E{x(k)|Zk}. (2.12)
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The best estimator for x(k) is thus the conditional expectation of x(k) given all avail-
able data Zk.

In order to exactly compute the conditional expectation of x(k) given all data Z k,
we need to know the conditional probability density function of x(k) given Z k. Denot-
ing this conditional probability density function as p(x(k)|Z k), the conditional expec-
tation (2.12) can be computed as:

E{x(k)|Zk} =
�

x(k)p(x(k)|Zk)d{x(k)}. (2.13)

where the integral over x(k) is performedover the entire space R
nx . Suppose p(x(k)|Zk)

is available at some initial time index k0, then the conditional probability density func-
tion at all sampling instants k > k0 can then in principle also be computed exactly, via
a two stage recursive algorithm.

The first stage of the algorithm is called the prediction stage. In this step the
system model equations (2.1), (2.7) are used to compute the a priori probability density
function p(x(k + 1)|Zk) of the future state x(k + 1). The a priori probability density
function is given by:

p(x(k+1)|Zk) =
�

p(x(k+1)|x(k))p(x(k)|Zk)d{x(k)} (2.14)

in which p(x(k + 1)|x(k)) is the probability density function that describes the prob-
ability of a state transition from a given state x(k) to a possible state x(k + 1). This
probability density function can be computed using (2.1) and (2.7) via:

p(x(k+1)|x(k)) =
�

w(k)∈Dw(x(k+1)|x(k))
p(w(k))d{w(k)} (2.15)

in which p(w(k)) is the probability density function of w(k) and Dw(x(k+1)|x(k)) is
a set of realizations w(k) defined as:

Dw(x(k+1)|x(k)) � {w(k) : x(k+1)− f (x(k),u(k),w(k)) = 0}. (2.16)

If the probability density function p(w(k)) is known the integral (2.15) can be solved.
The second step of the algorithm is the correction step. The correction step com-

putes the conditional probability p(x(k +1)|Z k+1) once a new measurement y(k+1)
becomes available. The new conditional probability density function is computed us-
ing the well-known Bayes rule [69]:

p(a|b,c) =
p(b|c)p(b|a,c)

p(a|c) . (2.17)

Substituting x(k+1) for a, y(k+1) for b and Z k for c we thus have:

p(x(k+1)|Zk+1) = p(x(k+1)|Zk,y(k+1)) (2.18)

=
p(y(k+1)|x(k+1))p(x(k+1)|Zk)

p(y(k+1)|Zk)
. (2.19)
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The probability density function p(y(k+1)|x(k+1)) can be computed using the model
equations (2.2) and (2.7):

p(y(k+1)|x(k+1)) =
�

Dv(y(k+1)|x(k+1))
p(v(k+1))d{v(k+1)}, (2.20)

in which Dv(y(k+1)|x(k+1)) is the set of realizations of v(k+1) defined as:

Dv(y(k+1)|x(k+1)) � {v(k) : y(k+1)−h(x(k+1),u(k+1),v(k+1))= 0}.(2.21)

The integral (2.20) thus summarizes the probability mass of all realizations of v(k+1)
such that y(k+1) = h(x(k+1),u(k+1),v(k+1)).

The final term p(y(k+1)|Zk+1) in (2.19) can be computed via:

p(y(k+1)|Zk) =
�

p(y(k+1)|x(k+1))p(x(k+1)|Zk)dx(k+1). (2.22)

Of course, analytically computing these equations is often infeasible, hence in
practice methods are often used that can approximately compute these equations.

Only in the special case that the functions f (·) and h(·) in the available model are
linear functions in x(k), u(k), w(k) and v(k), and v(k) and w(k) Gaussian white noise
processes, the conditional expectation (2.12) can be efficiently computed. This can be
accomplished using the well known Kalman filter.

2.3.2 Kalman filter

Introduction

As described above, for linear systems with Gaussian distributed process disturbances
and measurements errors, the conditional expectation (2.12) that corresponds to the
optimal estimator x̂(k,Zk) can be computed exactly and efficiently using Kalman filter
theory [47]. A good summary of the historical developments that have led to the
development of the Kalman filter equations is presented in [86]. In the following,
only the main results are presented.

Kalman filter recursions

In order to apply Kalman filter theory to produce optimal estimates of the state x(k), it
is required that the true process under study can be modelled using a linear state-space
model:

x(k+1) = A(k)x(k)+B(k)u(k)+w(k) (2.23)

y(k) = C(k)x(k)+ v(k) (2.24)

with A(k),B(k),C(k) known matrices of appropriate dimension. It is also required that
the process noise w(k) and the measurement error v(k) are realizations of stochastic
Gaussian white noise processes as described by (2.7). Finally, in order to initialize
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the Kalman filter an initial estimate of x(k0) is required. The error between the initial
estimate and the actual value of x(k0) should be Gaussian distributed with a known
error covariance.

Using these assumptions, the Kalman filter can be used to compute state estimates
that have an optimal MSE as defined (see (2.10)). The Kalman filter is a two stage
recursive algorithm. It consists of a prediction step (also called the time update) and a
correction step (also called the measurement update).

Before presenting the actual Kalman filter equations, the following notation is
introduced for the conditional expectation of x(k) given data Z l :

x̂(k|l) � E{x(k)|Zl}. (2.25)

For k = l the conditional expectation is called the filter estimate, for k > l it is referred
to as the optimal prediction and for k < l it is called the smoothed estimate. The error
covariance matrix of the conditional expectation is denoted as:

Px̂(k|l) � E{(x(k)− x̂(k|l))(x(k)− x̂(k|l))T } (2.26)

This notation is used in the original paper of Kalman [47], and has since been adopted
in many texts about Kalman filters.

The first step of the Kalman filter procedure (the prediction step), uses the current
filter estimate x̂(k|k) and its associated error covariance matrix Px̂(k|k) to compute the
optimal prediction x̂(k+1|k) of the future state x(k+1):

x̂(k+1|k) = E{x(k+1)|Zk} (2.27)

= A(k)x̂(k|k)+B(k)u(k). (2.28)

The error covariance of the state prediction can be computed via:

Px̂(k+1|k) = E{[x(k+1)− x̂(k+1|k)][x(k+1)− x̂(k+1|k)]T} (2.29)

= A(k)Px̂(k|k)A(k)T +Q(k). (2.30)

Using the optimal prediction for the state, x̂(k + 1|k), the optimal prediction for
the next output y(k+1) can be easily computed via:

ŷ(k+1|k) � E{y(k+1)|Zk} (2.31)

= Cx̂(k+1|k). (2.32)

Once the measurement y(k+1) becomes available, the prediction x̂(k+1|k) can be
used to compute the filter estimate x̂(k +1|k +1) and its covariance Px̂(k+1|k+1). This
step is often called the measurement update, but is also referred to as the correction
step. It can be shown that the measurement update can be computed using (see for
instance [3][46]):

x̂(k+1|k+1) = E{x(k+1)|Zk+1} (2.33)

= x̂(k+1|k)+K(k+1)(y(k+1)− ŷ(k+1|k)) (2.34)
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in which K(k+1) is the Kalman gain matrix:

K(k) = Px̂(k|k−1)C(k)T (C(k)Px̂(k|k−1)C(k)T +R(k))−1. (2.35)

The error covariance of this filter estimate x̂(k + 1|k+ 1) can be computed using the
following equation:

Px̂(k+1|k+1) = E{[x(k+1)− x̂(k+1|k+1)][x(k+1)− x̂(k+1|k+1)]T}
= Px̂(k+1|k)−K(k)C(k)Px̂(k+1|k). (2.36)

To sum up: we have seen that based on some initial estimate x̂(k0|k0) and its error
covariance, the Kalman filter allows one to recursively compute optimal state esti-
mates x̂(k|k) for all k > k0 by successively using the presented prediction and correc-
tion steps. Compared to the operations required to solve the general filtering problem
described earlier, the Kalman filter is computationally a much simpler method to pro-
duce state estimates, because it avoids the use of complex integrals over probability
density functions.

Kalman filter related properties and definitions

In the years after the invention of Kalman filtering theory, the Kalman filter has be-
come a valuable tool in the fields of signal processing, system identification and con-
trol. Given its important role in these fields, the properties of the Kalman filter have
been studied in great detail. This section provides a summary of some properties of
the Kalman filter that will be used in the remainder of this thesis. For a derivation and
discussion of the presented properties the reader is referred to monographs as [3][42].

The innovation signal e(k) of a Kalman filter is defined as:

e(k) = y(k)− ŷ(k|k−1). (2.37)

It can be shown that the innovation sequence is again a zero mean Gaussian distributed
white noise process [3]:

E{e(k)} = 0 (2.38)

Pe(k)e(l) � E{e(k)e(l)T } (2.39)

=
�
C(k)Px̂(k|k−1)C(k)T +R(k)

�
δ (k− l). (2.40)

In the Kalman filter equations presented earlier in this section, the linear system
matrices were allowed to be time-varying. In most applications however, the matrices
A(k),B(k),C(k),Q(k),R(k) are constant. If these matrices are indeed constant, it can
be shown that the Kalman gain K(k) converges to a constant matrix as k tends to
infinity.

The Kalman state estimate x̂(k|k) can be shown to be equivalent to the solution of
a regularized least squares problem (see for instance [85][3]). Suppose that ξ̂ (k−M+
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1), . . . , ξ̂ (k) are the solution to the following least squares problem:

ξ̂ (k−M+1), . . . , ξ̂ (k)= arg min
ξ (k−M+1),...,ξ (k)

k
i=k−M+1

‖v̂(i)‖2
R(i)−1 +

k−1
i=k−M

‖ŵ(i)‖2
Q(i)−1

+‖ξ (k−M)− x̂(k−M|k−M)‖2
P−1
x̂(k−M|k−M)

(2.41)

subject to

v̂(i) = y(i)−C(i)ξ (i) (2.42)

ŵ(i) = ξ (i+1)−A(i)ξ (i)−B(i)u(i), (2.43)

with M any positive integer. Then, it holds that

ξ̂ (k) = x̂(k|k) = E{x(k|Zk)} (2.44)
...

ξ̂ (k−M +1) = x̂(k−M +1|k) = E{x(k−M +1|Zk)}. (2.45)

Several authors (see for instance [42]) have observed that minimizing the least
squares criterion (2.41) is equivalent to maximizing the a posteriori conditional prob-
ability density function p(x(k), . . . ,x(k−M +1)|Zk).

Since the error in the prior x(k−m)− x̂(k−M), the disturbances w(k−1), . . . ,w(k−
M) and the measurement errors v(k), . . . ,v(k−M +1) are all Gaussian, the maximum
of the posteriori conditional probability density function p(x(k), . . . ,x(k−M +1)|Z k)
corresponds to the conditional expectations in (2.44).

Using the least squares problem (2.41) to estimate state is computationally more
involved than using the Kalman recursions (2.28)-(2.34). As a result the least squares
form is virtually never used to estimate the state of a linear system. However, as will
be discussed in the next section, the least squares form (2.41) is easier to generalize to
nonlinear systems.

Finally, in the derivations of the Kalman filter and all its properties we have as-
sumed that all disturbances and measurement errors have a Gaussian distribution.
Only under this assumption do the Kalman estimates x̂(k|k) correspond to the best
possible estimates in the MSE sense. In the more general case in which disturbances
and measurement errors are not Gaussian distributed, it still holds that the Kalman
filter is the best possible linear unbiased estimator of x(k) in the MSE sense.

2.3.3 Nonlinear state estimation

Introduction

For linear systems the Kalman filter recursions can be used to efficiently compute the
optimal state estimate (2.12). For the cases in which f (·) or h(·) are nonlinear, the
optimal state estimate can only be computed using the complex expressions (2.14)-
(2.22). Since it is often infeasible to compute the optimal state estimate using these
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relations, approximate filter relations are generally used. The resulting approximate
filters only approximate the optimal state estimate E{x(k)|Zk}. The approximate fil-
ters can be divided into four main groups: Extended Kalman filters, approximately
best linear unbiased filters, least squares based filters and Monte Carlo or particle
filters.

Extended Kalman filters

If the functions f (·) and h(·) can be accurately approximated by a linear system of the
form (2.23)-(2.24) for all x(k) within the confidence intervals of x̂(k|k−1) and x̂(k|k),
then it is reasonable to assume that a linear Kalman estimator based on linearization
of the nonlinear model (2.1)-(2.2) will still produce good results.

By far the most popular filter that is based upon this reasoning, is the Extended
Kalman filter (EKF). The EKF recursions are given by:

Prediction step:

x̂(k+1|k) = f (x̂(k|k),u(k),0) (2.46)

Px̂(k+1|k) = F(k)Px̂(k|k)F(k)T +G(k)Q(k)G(k)T (2.47)

with

F(k) =
∂ f (x,u,w)

∂x

����
x=x̂(k|k),u=u(k),w=0

(2.48)

G(k) =
∂ f (x,u,w)

∂w

����
x=x̂(k|k),u=u(k),w=0

. (2.49)

Correction step:

x̂(k+1|k+1) = x̂(k+1|k)+K(k)[y(k)−h(x̂(k+1|k)] (2.50)

Px̂(k+1|k+1) = Px̂(k+1|k)−K(k)H(k)Px̂(k+1|k), (2.51)

with

K(k) = Px̂(k+1|k)H(k)T (H(k)Px̂(k+1|k)H(k)T +R(k))−1 (2.52)

and

H(k) =
∂h(x,u,v)

∂x

����
x=x̂(k+1|k),u=u(k),v=0

. (2.53)

As can be seen the EKF requires the computation of the Jacobian of both f (·)
and h(·). If the nonlinear model (2.1)-(2.2) is only available in its explicit form, these
Jacobians are mostly approximated numerically. The most basic method to approx-
imately compute the Jacobians is using the method of finite differences. Using this
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method the i− th column of the Jacobian F(k) is approximated using the following
formula:

f (x(k)+ εei,u(k),0)− f (x(k),u(k),0)
ε

, (2.54)

with ε a small scalar constant and ei a vector containing only zeros except for its i− th
element, which is one:

eT
i = [0 · · · 0 1 0 · · · 0] . (2.55)

Computing the Jacobians numerically in this manner thus requires at least n x +1 func-
tion evaluations; one function evaluation of f (x(k),u(k),0) and n x further evaluations
of f (x(k)+ εei,u(k),0) for i = 1, . . . ,nx. Similarly, computing the Jacobian H(k) us-
ing the same technique requires nx +1 function evaluations of h(·).

Approximate best linear unbiased estimators

For linear models, it can be shown that the correction step of the Kalman filter (see
(2.34)-(2.36)) exactly corresponds to the Best Linear Unbiased Estimate (BLUE) of
x(k) given e(k). To make this apparent first the general form of the BLUE will be
presented. Suppose that two random variables x and y have a priori means and covari-
ances given by:

E



x
y

�
=



µx

µy

�
and (2.56)

E



x− µx

y− µy

�

x− µx

y− µy

�T

=
�

Rxx Rxy

RT
xy Ryy

�
. (2.57)

Then the BLUE of x given a realization of y is:

x̂ = µx +RxyR
−1
yy (y− µy), (2.58)

and the error covariance of x̂ can be computed via:

E(x− x̂)(x− x̂)T = Rxx −RxyR
−1
yy RT

xy. (2.59)

From these expressions it is relatively easy to see that the correction step (2.34) in
the Kalman filter indeed corresponds to the BLUE estimate of x(k) given e(k). After
substituting

x̂ = x̂(k+1|k+1) (2.60)

y = e(k+1) (2.61)

µx = x̂(k+1|k) (2.62)

µy = 0 (2.63)

Rxy = Px̂(k+1|k)C(k+1)T (2.64)

Ryy = Pe(k+1)e(k+1) (2.65)
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in (2.58) and (2.59) these equations exactly correspond to (2.34) and (2.36). For con-
venience, we use the following form of the BLUE:

x̂(k+1|k+1) = x̂(k+1|k)+P(x(k+1)−x̂(k+1|k))e(k+1)P
−1
e(k+1)e(k+1)e(k+1), (2.66)

with P(x(k+1)−x̂(k+1|k))e(k+1) the cross-covariance between the state prediction error
x(k+1)− x̂(k+1|k) and the innovation signal e(k+1).

Note that for the expression for the BLUE it does not matter if the available model
is linear or nonlinear. Even though the expression for the BLUE remains unchanged
for nonlinear systems, computing the BLUE is generally more difficult. In the lin-
ear case all required predictions and associated covariance matrices can be computed
exactly using the Kalman time update and measurement update equations. In the non-
linear case generally no computationally easy relations exist to compute either the
predictions or their covariances. Thus approximate methods have been developed to
compute the required expressions in (2.58)-(2.65).

The simplest method to compute all the required predictions and covariances is by
linearizing the model as was done in the Extended Kalman filter. While this approach
is often good for nearly linear models, better methods exist for models with more
pronounced nonlinear behavior (see [98]).

Instead of linearizing f (·) and h(·) the required predictions and covariances can
also be obtained empirically using a procedure that utilizes simulations of f (·) and
h(·). Basically these simulation based procedures generally follow the same proce-
dure. As an example we will show how such a simulation based procedure is used to
compute the predicted state x̂(k+1|k) and its error covariance Px̂(k+1|k). The first step
in the simulation based procedure is to generate a set of points x i,wi with i = 1, . . . ,N,
with a predetermined distribution such that:

E{xi} = x̂(k|k) (2.67)

E{wi} = 0 (2.68)

E{(xi − x̂(k|k))(xi − x̂(k|k))T = Px̂(k|k) (2.69)

E{wiwi
T} = Q(k). (2.70)

The exact methods by which points xi and wi are generated differs among the BLUE
based estimators. The points xi and wi are used to generate points x∗i via simulations:

x∗i = f (xi,u(k),wi). (2.71)

The resulting set of points x∗i is now used to determine x̂(k + 1|k) and Px̂(k|k−1). The
predicted state is typically computed via:

x̂(k+1|k) =
1
N

N
i=1

xi. (2.72)

The error covariance of this predicted state is typically computed using the following
formula:

Px̂(k+1|k) =
1
N

N
i=1

(xi − x̂(k+1|k))T (xi− x̂(k+1|k)). (2.73)
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Similar simulations with h(·) are used to determine e(k) and Pe(k)e(k).
As already mentioned, the differences between BLUE based filters are mainly the

methods which are used to generate the points x i and wi. While some filters use a
deterministic method of choosing xi and wi, other filters use samples drawn from a
predetermined stochastic process to generate the points x i and wi. An example of a
state estimator that deterministically chooses the simulation points is the Unscented
Kalman Filter (UKF) [44]. The selection of the simulation points is called the Un-
scented Transform. Many authors have reported that the state estimates produced by
the UKF are more accurate than the EKF, see for instance [98][44]. The UKF requires
4(nx +nw +nv) simulations per state estimate to compute the required predictions and
covariances in (2.66).

Like the UKF, the DD2 filter introduced in [73] also chooses its simulation points
deterministically. Where the UKF is based on the Unscented Transform to approxi-
mate the required means and covariance matrices, the DD2 filter is based on Stirling’s
approximation of a nonlinear function. The resulting choice for the DD2 filter’s sim-
ulation points is similar to those of the UKF filter. As a result, the accuracy of both
filters is generally very similar [25].

A filter that determines its simulation points using stochastic measures is the En-
semble Kalman Filter (EnKF) [28]. The EnKF draws its set of simulation points from
a normal distribution, with a predetermined mean and covariance. For linear systems
the EnKF’s estimate are only equivalent to the Kalman filter estimates as the number
of simulation points tends to infinity.

Least squares approach

For linear systems, it was already mentioned that the optimal state estimate is equiva-
lent to the solution of least squares problem (2.41). Furthermore, the solutions to the
least squares problem are equivalent to the maximum a posteriori (MAP) estimate of
the state.

It can be shown that for a special class of nonlinear models, where both process
noises and measurement errors occur additive in the model equations, i.e. models of
the form:

x(k+1) = f (x(k),u(k))+w(k) (2.74)

y(k) = h(x(k),u(k))+ v(k), (2.75)

that the MAP estimate of the system states are still equivalent to the solution of a
least squares problem [79]. This least squares problem is given by (2.41), where the
constraints (2.42)-(2.43), are replaced by:

v̂(i) = y(i)−h(ξ (i),u(i)) ∀ i = k−M +1, . . . ,k, (2.76)

ŵ(i) = ξ (i+1)− f (ξ (i),u(i)) ∀ i = k−M, . . . ,k−1. (2.77)

The resulting least squares problem is nonlinear in ξ (k−M), . . . ,ξ (k) and can often
only be solved numerically.
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The least squares problem contains an initial estimate x̂(k−M|k−M) and its co-
variance Px̂(k−M|k−M). These are in general computed using a different nonlinear state
filter, such as the extended Kalman filter described earlier. It is intuitively clear that the
effect of the importance of the initial estimate x̂(k−M|k−M) will in general decrease
as the window length M increases.

Probably the best known least squares based filter is the MovingHorizon Estimator
(MHE) [78][79]. To constrain the MHE estimates within certain bounds, additional
constraints are often used while solving the least squares problem. These bounds are
used to ensure that state estimates corresponding to physical quantities that physically
bounded are also bounded. Bounds could be used for instance to ensure that states
estimates corresponding to chemical concentrations are always greater than or equal
to zero. Estimates using an EKF or BLUE based filter are not guaranteed to respect
these limits, because both estimators are based on the classic Kalman filter, which
assumes all states have a Gaussian distribution.

Approximate Bayesian state estimators

All previously described nonlinear state estimators are in some manner based on the
linear Kalman filter. As a result, the state estimators are not guaranteed to converge to
the optimal estimate based on the conditional expectation of x(k) given all available
data (see (2.12)). In contrast, the approximate Bayesian based estimators that will
be described in this section attempt to construct the optimal state estimate (2.12) by
using Monte Carlo simulations. The main advantage of the methods discussed in this
section is that no assumptions on f (·) or h(·) are used and w(k) and v(k) are allowed
to have any distribution.

Approximate Bayesian filters approximate the exact optimal filtering equations
(2.14)-(2.22) described in section 2.3.1 using sequential Monte Carlo simulations. In
the Monte Carlo simulations the goal is to approximate the various probability density
functions in (2.14)-(2.22) using large numbers of samples. Indeed, as the number of
samples tends to infinity, any probability density function can be accurately approxi-
mated in this manner.

Since the exact solution consists of two stages (prediction stage and a correction
stage), Bayesian filters also consist of two stages. In the first stage of the exact equa-
tions, the conditional probability density function p(x(k + 1)|Z k) is computed using
(2.14)-(2.15). Approximating p(x(k + 1)|Z k) using Monte Carlo simulations is rela-
tively simple. For the Monte Carlo approximation we first draw N p samples xi(k), for
i = 1, . . . ,Np are drawn from the distribution p(x(k)|Z k). For each of these samples
xi(k) new samples x∗i (k+1) are computed via:

x∗i (k+1) = f (xi(k),u(k),wi(k)), (2.78)

with wi(k) a random sample drawn from p(w(k)). It is intuitively clear that the sam-
ples x∗i are distributed according to p(x(k+1)|Zk).

In the correction step of the exact filter, a measurement y(k + 1) is used to com-
pute the probability density function p(x(k + 1)|Z k+1) using equations (2.19)-(2.22).
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Approximating this probability density function using Monte Carlo simulations can
be done in different manners. Here we shall present a relatively simple method as
introduced in [32].

Once a new measurement y(k+1) becomes available, each of the previously com-
puted samples x∗i is given a normalized weight qi. This normalized weight is computed
using the following equation:

qi(k+1) =
p(y(k+1)|x∗i (k+1))�Np
i=1 p(y(k+1)|x∗i (k+1))

. (2.79)

To construct samples that are approximately distributed as p(x(k +1)|Z k+1) we need
to define a discrete probability density function p(x ∗|y(k)) such that Pr(x∗ = x∗i (k +
1)) = qi(k + 1) and again draw Np samples xi(k + 1) from this distribution such that
Pr(xi(k+1)= x∗i (k+1))= qi. It can then be shown that the samples xi(k+1) will have
approximately the same distribution as p(x(k+1)|Z k+1) [32]. Using this approximate
distribution the state estimate x̂(k+1|k+1) is given by:

x̂(k+1|k+1) =
Np
i=1

xi(k+1). (2.80)

Obviously, the accuracy of an approximate Bayesian filter will increase as the
number of samples Np increases. Convergence results are only available for Np → ∞.
There are no simple results that can be used to chose finite number of samples N p such
that procedures as the one described above will results in an estimation accuracy that is
satisfactory. Thus Np is often determined using trial and error. In general the required
number of samples depends on the state dimension nx and size of the areas for which
both the prior p(x(k)|Zk−1) and the likelihood p(y(k)|x(k)) have a significant value.

An overview of current Monte Carlo based approximate Bayesian filters can be
found in [24].

2.3.4 Filtering in the presence of modelling errors

The filtering theory discussed so far assumes that the available model (2.1) - (2.7) is
exactly known. If this is indeed the case, the (nonlinear) filtering algorithms presented
in the previous sections can be used to generate accurate state estimates.

The assumption that the available model is perfect is often not very realistic. There
are many reasons which could cause that the available model to contain modelling
errors. For example, during the modelling certain (minor) effects may have been
neglected.

For simplicity we rewrite the model equations such that the modelling errors in
(2.1)-(2.2) are collected in extra error terms werr(k) and verr(k):

x(k+1) = f (x(k),u(k),w(k))+werr(k) (2.81)

y(k) = h(x(k),u(k),v(k))+ verr(k). (2.82)
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The problem of how we can generate state estimates with realistic error covariance
matrices using an imperfect model has led to the field of robust filtering.

The most basic technique to make state filters more robust is by using a technique
similar to stochastic embedding in the fields of parameter estimation and system iden-
tification [72]. Even though the error sequences werr(k) and verr(k) are deterministic,
the stochastic embedding approach models the error sequences as stochastic processes
with a known mean and variance. Using this assumption, the easiest method to obtain
a state estimate is to use one of the normal state estimation techniques presented in
the previous sections with extra process disturbances and measurement errors corre-
sponding to the assumed behavior of werr(k) and verr(k). This stochastic approach to
generate a more “robust” filter is often used when a linear Kalman filter is used to pro-
duce state estimates for nonlinear systems [85][42]. In these applications a linearized
model is used to estimate the state of the system instead of the original nonlinear
system model. It has been shown that under certain circumstances the resulting lin-
ear filters become unstable when the modelling error resulting from the linearization
is disregarded. It has been shown that including an extra stochastic error term can
prevent the divergence of the linear Kalman filter [84].

A second class of robust filters assumes that the modelling errors werr(k) and
verr(k) are norm bounded. This assumption has led to the development of various
robust filters, see for instance [100], [75] and [90]. The advantage of this category of
filters is that these types of robust filters can provide guaranteed uncertainty areas for
the estimated state variables. Drawbacks of these robust filters are that the uncertainty
region of the state estimates is often very conservative. Also the algorithms that are
used to compute these estimates often require that nominal models are linear. Even
using linear models the various algorithms are generally far more computationally de-
manding than the standard Kalman filter. As a result this class of filters is hard to
apply for large-scale nonlinear filtering problems.

2.4 Projection based model reduction

2.4.1 Introduction

If the state dimension of the models used for state estimation is very large (n x >> 103)
then applying the nonlinear state estimation techniques discussed above can become
computationally infeasible. This infeasibility has two main causes: the dimension
of the error covariance matrix of the state may become too large to store in com-
puter memory and secondly the number of model evaluations required in most of the
discussed state estimation algorithms increases at least linearly with nx; therefore dra-
matically increasing the time required to compute filter estimates.

A partial solution to the problem consists of reducing the model by defining a new
state variable xred(k) that has a dimension nred << nx. To compute these reduced or-
der models several techniques can be found in the literature. An overview of model
reduction techniques used for first principles models in the process industry is pro-
vided in [63][92]. Model reduction techniques can approximately be divided into two
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classes. The first class of methods uses physical insight to derive a lower order model
of the process. While good results can be obtained in this manner, the techniques used
are generally very problem specific. The second class of methods is the class of pro-
jection methods. For many of the model reduction methods in this class no specific
physical insight is required. This makes the second class of techniques easier to use in
practice. In this section we will limit ourselves to only describing methods from this
second class.

In any controllable system with state dimension nx, the actual state of the system
theoretically can vary in a nx dimensional space. In practice, however, the state of
models representing physical systems often largely remains in a lower n red dimen-
sional subspace. This implies that it is possible to construct an accurate lower order
approximative model. This model will be of the form:

xred(k+1) = fred(xred(k),u(k),w(k)) (2.83)

y(k) = hred(xred(k),u(k),v(k)). (2.84)

As already mentioned above, in this section we will only discuss projection based
methods. Projection based model reduction techniques search for a full column rank
matrix T ∈ R

nx×nred with nred << nx that induces a reduced order state vector by:

xred(k) = T †x(k), (2.85)

in which T † is the pseudo-inverse of T :

T † = (TT T )−1TT . (2.86)

Once such a matrix T has been constructed, the reduced order model is generated
using Galerkin projection:

fred(xred(k),u(k),w(k)) = T † f (Txred(k),u(k),w(k)) (2.87)

hred(xred(k),u(k),v(k)) = h(Txred(k),u(k),v(k)). (2.88)

Once a suitable projection matrix T has been chosen, state estimation can be done
using the reduced order model (2.83)-(2.84). Using the reduced order model for state
estimation will result in estimates for the reduced order state x̂ red(k|k). From these
reduced order state estimates, estimates for the original full-order states can be recon-
structed using:

x̂rec(k|k) = T x̂red(k|k). (2.89)

The problem of reducing the model (2.1)-(2.2) for state estimation problems is
thus to find a matrix T of rank nred such that the reconstructed state estimate x̂rec(k|k)
is as accurate as possible. Unfortunately no technique exists in the literature to find
the desired matrix T for the objective of state estimation.

Since no specialized technique for projection based model reduction for state esti-
mation exists, general purpose projection based model reduction tools are commonly
used. In the next sections, the two most important reduction techniques will be dis-
cussed.
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2.4.2 Proper Orthogonal Decomposition

Reduction criterion and general solution

The Proper Orthogonal Decomposition (POD)1 model reduction technique is a well
known method to derive a reduced order basis. The POD technique has been success-
fully applied in various fields, such as fluid dynamics [37], pattern analysis [49], and
process control applications [5][21][60].

The POD method for model reduction attempts to find a set of n red basis vectors
(with nred < nx) for the state of the system x(k) such that the MSE between a state and
the closest possible representation using a linear combination of the n red POD basis
vectors is minimal. Mathematically this means that the POD method has the objective
to find a projection matrix TPOD ∈ R

nx×nred for model reduction satisfying:

TPOD = argmin
T

E{‖x(k)−TTT x(k)‖2} subject to TT T = I, (2.90)

in which

E{x(k)} = lim
N→∞

1
N

N
k=1

E{x(k)}. (2.91)

In order to solve the reduction criterion (2.90), it is necessary to first determine the
pseudo-covariance matrix of the states of the system. The pseudo-covariance matrix
of the state, denoted by Px ∈ R

nx×nx , is defined as:

Px = E{x(k)x(k)T }. (2.92)

Note that a pseudo-covariance differs from the normal covariance matrix because it is
defined using the E(·) operator instead of the expectation operator E(·) for a normal
covariance matrix.

Assume for the moment that this matrix Px is known. Since it holds that Px is a
nonnegative pseudo-covariance matrix, it has a complete set of orthogonal eigenvec-
tors p1, . . . , pnx and corresponding set of eigenvalues λ1 ≥ . . .λnx ≥ 0. The matrix
TPOD that minimizes (2.90) can then be found by choosing TPOD as a matrix made up
of the nred eigenvectors of Px corresponding to the largest eigenvalues. As a result,
the POD method thus retains those modes in the state-space in which x(k) exhibits the
largest variability.

It should be noted that as a result of this choice for the reduction criterion, the POD
model reduction procedure is sensitive to the scaling of the states of the system. In
practical situations, this means that changing the units for some elements of the orig-
inal state can have consequences for the resulting reduced order model after applying
POD model reduction.

Also note that the pseudo covariance matrix Px is dependent of the input that gen-
erated the state sequence x(k). The best reduction results are obtained if the inputs

1The POD technique is also known under the names Principle Component Analysis (PCA), Karhunen-
Loéve Decomposition and Empirical Eigenfunction Analysis
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u(k) used to compute the pseudo-covariance Px correspond to the inputs used during
the application of the reduced order model. In many applications however the input
sequence is not yet known when computing the reduced order model and thus a best
guess is used for input sequence.

At this point it is important to notice that the method to obtain the POD projection
matrix TPOD presented above can rarely be used in practice. Apart from the problem
that the input sequence to compute Px is often unknown, the dimensions of Px are
nx×nx, thus performing computations with this matrix is generally difficult for models
with nx >> 103.

As a result, the projection matrix TPOD is rarely determined as described above.
Instead approximative methods are commonly used. Two of these methods will be
described below.

Method of snapshots

The most common method of approximately computing the projection matrix TPOD is
the method of snapshots. For the method of snapshots, we use the property that (2.92)
can be rewritten as:

Px = lim
N→∞

1
N

E{X(N)T X(N)}, (2.93)

with X(N) defined as:

X(N) = [x(1) . . . x(N)]. (2.94)

The matrix X(N) is often referred to as the snapshot matrix.
There are three main difficulties in computing the matrix Px using (2.93):

1. In practice we cannot construct a matrix X(N) that consists of an infinite number
of columns.

2. The expected value operator E{·} in (2.93) is generally difficult to evaluate.

3. The dimension of Px is nx×nx. For nx >> 1000 computing the eigenvalues and
eigenvectors is computationally difficult.

To overcome these difficulties, the method of snapshots computes an approxi-
mate POD basis using a pseudo covariance matrix Px,snap that is computed using finite
length snapshot matrices X(N):

Px,snap =
1
N

X(N)X(N)T . (2.95)

In practice the number of snapshots N used to compute the approximate pseudo covari-
ance matrix Px,snap is usually in the order of 100. Also note that in the computation of
the approximate pseudo covariance matrix, the expectation operator that was present
in (2.93) has been removed.
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The dimension of Px,snap is nx × nx. Thus computing the eigenvalues and eigen-
vectors of Px,snap is still difficult if nx >> 1000. Often it is more efficient to compute
the eigenvalues and eigenvectors of Px,snap using the singular value decomposition of
X(N). Define the SVD of X(N) as:

USVT = X(N) (2.96)

with U,V unitary matrices and S the matrix containing the decreasing singular values
σ1 ≥ σ2 ≥ . . . ≥ 0. Using the SVD of X(N) it can be shown that the singular values
σi are equal to the eigenvalues of Px,snap. Also, the i− th column of U can be shown
to correspond to the i− th eigenvector of Px,snap.

For nx >> 1000 the size of the pseudo covariance matrix Px,snap is typically much
larger than the snapshot matrix X(N), because N < nx. Since X(N) is a much smaller
matrix, computing the SVD of X(N) is therefore computationally easier than comput-
ing an eigenvalue decomposition of Px,snap.

Step response based method

A method very similar to POD model reduction has been proposed in [58]. Instead of
using the eigenvectors of Px as the projection basis, the eigenvectors are computed of
a similar matrix Pt :

Pt =
�

G∈Ω

N
k=0

xG(k)xG(k)T dG, (2.97)

with xG(k) the state of the original model as the result of a possible input sequence
denoted by G. The integral is computed of the space Ω consisting of all possible
trajectories in the working area.

The integral expression for the matrix Pt is difficult to compute exactly for non-
linear systems and thus the paper provides methods how Pt can be approximately
computed. In the approximation the original nonlinear model has to be linearized in
various working points of the total working area. The interpretation of Pt is quite
similar to Px in that is represents energy introduced in the states as a result of inputs.

Apart from the use of Pt instead of Px the method is very similar to the more
common POD method of snapshots.

Goal-oriented model reduction

The generic POD model reduction techniques described above do not consider the
goal for which the reduced order model is used. In our case this means the POD model
we obtain with the described methods is generally not the optimal reduced order for
monitoring purposes. In fact, currently no model technique exists that can derive a
reduced order model that is optimal for monitoring.

Recently a paper was published that modifies the generic POD method to a goal-
oriented form of model reduction [99]. The suggested approach to obtain a goal-
oriented form of model reduction is to add extra constraints to (2.90). These extra
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constraints can be used to influence the properties of the reduced order model. The
cited paper does not specifically consider the monitoring problem and as such no spe-
cific constraints are provided such that an optimal reduced order model for monitoring
can be obtained.

2.4.3 Balancing

Linear balancing

An important model reduction technique often used in control applications is balanc-
ing. Balancing attempts to retain those state directions that require little energy to
excite and yet are responsible for relatively large fluctuations of the output. This sec-
tion summarizes the main concepts of balancing. To simplify notation, we will only
discuss balanced reduction for deterministic models, so w(k) = 0 and v(k) = 0 for all
k.

In order to move the state of the system from x(0) = 0 to x(∞) = x ∗ requires that
we apply an appropriate input signal u(k). The minimum amount of energy that is
required for the input signal u(k) to steer the state from 0 to x ∗ can be computed using
the controllability function Lc(x):

Lc(x∗) = min
u(k)

∞
k=0

u(k)T u(k) s.t. x(0) = 0 and x(∞) = x∗. (2.98)

For linear systems (2.23)-(2.24) it can be shown that:

Lc(x∗) = x∗T M−1
c x∗. (2.99)

In this expression Mc is called the controllability Gramian of the system. From equa-
tion (2.99) it can be concluded that the eigenvectors of Mc corresponding to large
eigenvalues require little input energy to reach while state directions that correspond
to the eigenvectors of Mc that corresponds to a smaller eigenvalue, require relatively
much energy to reach.

Balancing not only considers the amount of input energy required to reach certain
states, it also considers the amount of output energy that is observed, while the system
state returns from a certain state x∗ to its equilibrium. The amount of output energy
that is observed as the state returns to its equilibrium is defined as:

Lo(x∗) =
∞

k=0

y(k)T y(k), when x(0) = x∗ and u(k) = 0 for k ≥ 0. (2.100)

Again, for linear systems it can be shown that:

Lo(x∗) = x∗T Mox
∗, (2.101)

in which Mo is called the observability Gramian of the system. From this last equation
it can be concluded that the eigenvectors of Mo that correspond to large eigenvalues
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are the state direction which cause relatively much output energy. Similarly, the eigen-
vectors of Mo that correspond to small eigenvalues are the state direction which cause
relatively little output energy.

The controllability and observability Gramians have two important properties.
First, it can be shown that the eigenvalues and eigenvectors of the product McMo

are invariant under similarity transform. The similarity transform of a linear system
(2.23)-(2.24) using the full rank matrix P is a new linear system with a new state vari-
able z(k) = P−1x(k), but it still describes exactly the same input-output behavior as
the original model. The similarity transform using a full rank matrix P is given by:

z(k) = P−1APz(k)+P−1Bu(k) (2.102)

y(k) = CPz(k)+Du(k). (2.103)

Secondly, it can by shown that there exists a similarity transform Σ that transforms
the system to its balanced form. The balanced form of the system is that similarity
transform of the original system for which it holds that:

Mbal
c = Mbal

o =

�
��

λ1
. . .

λnx

�
�� . (2.104)

In this balanced form, relatively large eigenvalues λ i correspond to those directions
in the state-space that can both be reached using using little input energy and, at the
same time, that cause the most output energy.

Thus, to obtain a reduced order model that retains those directions in the state-
space that are both easily excited and produce much output energy, the model reduc-
tion matrix T in equation (2.85) is thus chosen to correspond to the first n red columns
from Σ.

Comparison between balancing and POD

Whereas the POD method was argued to be sensitive to scaling of the states, it can be
shown that balancing is not affected by state transformations. Unfortunately, where
POD was insensitive to scaling of the inputs, balancing is sensitive to both scaling of
the inputs and scaling of the outputs.

When comparing balancing and POD for the specific purpose of state estimation,
the technique that produces the best reduced order models cannot be easily determined
in advance. Experience tells us that models obtained using balancing tend to be better
for state estimation. This is especially the case if the most controllable directions are
not observable. In this case the POD method will tend to retain the controllable states
even though the available measurements provide no extra information on the current
amplitude of these state directions.

In order to compute the projection matrix T using balancing we require both the
input and output Gramian. Computing each Gramian involves solving a Lyapunov
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equation. This makes balancing computationally more difficult than the POD. Us-
ing specialized algorithms however (see for instance [9]), it can be shown that it is
still possible to quickly compute the balanced truncation of systems that have a state
dimension in the order of ∼ 104.

Nonlinear balancing

The balancing technique outlined in the previous section can also be extended to non-
linear systems [83]. The extension to nonlinear systems requires finding expressions
as (2.98)-(2.104) for the controllability and observability functions L c(x) and Lo(x)
that are valid in the nonlinear case. In [83] it was shown that these functions can be
obtained as the solution of Lyapunov and Hamilton-Jacobi type of equations. A non-
linear extension of singular values is used to transform the system into its balanced
form. This form can again be used to derive the reduction projection matrix T of
(2.85).

Unfortunately, the analytical operations that are required to perform balanced re-
duction using the results from [83], are not computationally feasible for nonlinear
systems above a certain order. As a result several approximate nonlinear balancing
algorithms have been developed. For instance, in [71] a Monte Carlo approach was
introduced to approximate Lc(x) and Lo(x) for a two dimensional model. Another
approach is chosen in [51], where specific test signals are applied to the high order
model to find data-driven expressions for the controllability and observability matrix.

2.5 Summary and conclusions

This chapter has mainly served to review some of the available results in the literature
and introduce notation that will be used in later chapters. Given the subject of this
thesis and the problem formulation in the previous chapter we specifically focused on
available results for state estimation and model reduction.

On the subject of state estimation we first mathematically formulated the state es-
timation problem and presented the general solution. For the special case in which
process model is linear and both process disturbances and measurement noises are
Gaussian, the optimal solution is given by the famous Kalman filter equations. If
state estimation is to be performed using either nonlinear models or models for which
disturbances are not Gaussian, computing the optimal state estimates often becomes
computationally infeasible. As a result many sub-optimal estimators have been devel-
oped. Some of the more commonly used filters were presented in this chapter. The
sub-optimal filters were classified into four groups. Although each group of filters has
its own properties, all filters require many model evaluations with the nonlinear model
to compute the state estimate.

The second part of this chapter described projection based techniques for model
reduction. Only projection based techniques were presented because of their generic
applicability. Within the class of projection based methods we described the popular
POD and balancing techniques.
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For the purpose of state estimation, model reduction should ideally aim at deliver-
ing reduced order models that provide a state estimate as close as possible to the es-
timate that would have been obtained using the original model. However, we showed
that no currently available model reduction technique is able to achieve this objective.





Chapter 3

Reducing the simulation time of
large scale models

3.1 Introduction

As mentioned in Chapter 1, the use of large scale first principles models for online
monitoring applications is often hampered by the relatively large amount of CPU time
required per model evaluation. As described in Chapter 2, large scale first princi-
ples models are generally obtained using finite elements or finite differences methods
with a very fine spatial grid. Consequently, the obtained state-space models (see (3.1)
and (3.2)) are characterized by a very high state dimension and complicated non-linear
functions f (·) and h(·):

x(k+1) = f (x(k),u(k),w(k)) (3.1)

y(k) = h(x(k),u(k),v(k)). (3.2)

Often, the amount of CPU time required to compute a single evaluation of f (·)
and h(·) is at least in the order of the sampling interval. This large computation time
limits the use of large-scale first principles models to off-line simulation studies. An
online task such as state estimation is indeed made impossible by that excessive simu-
lation time since the computation of a state estimate based on a nonlinear model such
as (3.1)-(3.2) requires many model evaluations. For most advanced state estimation
techniques, the required number of model evaluations is in the order of the number of
states.

Since large-scale models can not be used for online tasks due to computational
constraints, we require methods that can reduce the computational complexity of
large-scale models. Based on the considerations above, this can be done using two
different methods:

1. by reducing the number of states (in order to reduce the number of evaluations
of the model required for the state estimation),

2. by reducing the complexity of the non-linear functions f (·) and h(·) (in order
to reduce the time required for each of the remaining evaluations).

37
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Both types of reduction are discussed in the sequel.
As the number of model evaluations that are required for state estimation is depen-

dent on the dimension of the state vector of the model, the computation time required
to obtain a state estimate can be reduced drastically by using a reduced order model
instead of the original first principles model (3.1)-(3.2) for state estimation. This re-
duced order model has the general form:

xred(k+1) = fred(xred(k),u(k),w(k)) (3.3)

y(k) = hred(xred(k),u(k),v(k)), (3.4)

with dim(xred) << dim(x). This reduced order model can for instance be derived
using projection methods, such as described in section 2.4.

If the reduced order model is used for state estimation, the required number of
model evaluations per sampling interval is in the order of dim(x red). For the original
full order model, in the order of dim(x) model evaluations would have been required.
The number of model evaluations can thus be drastically reduced using a reduced
order model.

Even with the reduction in the required number of model evaluations, using a re-
duced order model alone does not provide enough computational gain to allow online
state estimation. As will be shown in this chapter, the computational effort needed
to evaluate the model (3.3)-(3.4) is generally equivalent to the computational effort
needed to evaluate the original model1. The computation time required to estimate the
state will thus still be too large for on-line applications.

To enable state estimation for complex industrial processes, we thus require in
addition to state reduction techniques, techniques that can find new models that ap-
proximate (3.3)-(3.4), but require considerably less CPU time per simulation. These
computationally simpler models should be of the form:

xred(k+1) = f f ast(xred(k),u(k),w(k)) (3.5)

y(k) = h fast(xred(k),u(k),v(k)). (3.6)

Methods available in the literature that attempt to reduce the computational effort
for simulations with large-scale first principles models can roughly be divided into
four main categories.

1. The first category of methods consists of optimizing the spatial grid of the fi-
nite element method generating the large-scale model (3.3)-(3.4), see section
2.2. This could lead to a reduction of grid cells and thus also to a reduction of
the number of computations per model evaluation. The drawback of this ap-
proach is that by decreasing the number of grid cells, the model accuracy also
decreases. To minimize the decrease in accuracy, specialist knowledge is re-
quired to identify those areas in which a courser grid would hardly influence the
results.

1Note nevertheless that, in cases where the model is available in implicit form, some increase in simu-
lation speed can sometimes be obtained. This decrease in CPU time per model evaluation is mostly only
minor [4][92]. In fact, only when the original model (3.1)-(3.2) is linear will model reduction result in a
model that can be evaluated significantly faster than the original full order model.
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2. The second class of methods attempts to simplify the physical equations that
were used to generate the model. Physical relations are simplified by ignoring
higher order terms, or neglecting certain effects. While good results can be ob-
tained in this manner [30], this approach is highly problem specific, and requires
process specialists to perform the model simplification.

3. A very popular third approach to derive a faster simulation model is to linearize
(3.1)-(3.2) in a chosen working point before performing projection based model
reduction. For linear models, projection based model reduction instantly results
in a model that requires much less computational effort for performing model
evaluations. Obvious drawback of this method is that linearization only results
in reasonably accurate models if the original system was already close to linear
in the intended working area.

4. The final approach encountered in the literature to find faster approximative
models is based on system identification. In [40], equation (3.3) is approximated
using a linear state-space model that has the states of the reduced order model
as outputs:

ζ (k+1) = Âζ (k)+ B̂uu(k)+ B̂ww(k) (3.7)

xred(k) = Ĉζ (k)+ D̂uu(k)+ v(k). (3.8)

The state-space matrices Â, B̂u, B̂w,Ĉ,D̂u are identified using a subspace esti-
mator on simulation data generated by (3.3)-(3.4). The resulting model can be
interpreted as a linear approximation to the nonlinear model. The fact that the
resulting model is linear is also the main drawback of the method. If the original
model shows significant nonlinearities, the usefulness of the identified model is
limited.

In this chapter, two novel methods to accelerate computations with the original
model are presented. The first method attempts the decrease the required amount of
computations by only computing the original model for a subset of all the states of the
nonlinear model. The remaining states are reconstructed using linear relations that are
based on spatial and temporal correlations.

The second method is an identification based approach that can be seen as an
extension of the method in [40]. Instead of approximating the reduced order nonlinear
system with a single linear model, several locally linear models are used in a quasi-
Linear Parameter Varying (qLPV) model structure.

We are approximating a known model (3.3)-(3.4) for simulation purposes. In sim-
ulations both the deterministic inputs u(k) and stochastic inputs w(k) and v(k) are
known. Since u(k), w(k) and v(k) are all known, there is no fundamental difference
between the deterministic inputs u(k) and stochastic inputs w(k) and v(k). Without
loss of generality we can therefore simplify notation throughout this section by only
considering process models of the form:

x(k+1) = f (x(k),u(k)) (3.9)

y(k) = h(x(k),u(k)), (3.10)
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where we only have inputs u(k).
Since the amount of CPU time required to perform a model evaluation is generally

dominated by the state equation (3.9), this chapter only considers methods for finding
approximations for this function.

3.2 Computational complexity of the reduced order
model

If the original first principles model (3.9)-(3.10) is only available in an explicit form
(no access to the underlying model equations), than any reduced order model obtained
using a projection based model reduction technique will have the following form:

xred(k+1) = T † f (Txred(k),u(k)) (3.11)

y(k) = h(Txred(k),u(k)), (3.12)

with T ∈R
nx×nred the projection matrix that has full column rank and T † is the pseudo-

inverse of T defined by:

T † = (TT T )−1TT . (3.13)

To compute the state update for a reduced order model (3.11) the following proce-
dure is required:

Procedure 3.1 If a model (3.9) is only available in explicit form, computing the state
update of the corresponding reduced order model (3.11) is done using the following
steps:

1. Expand the reduced state xred(k) to approximate x(k) via

x(k) = Txred(k). (3.14)

2. Compute new state x(k+1) via (3.9).

3. Compute reduced state xred(k+1) from x(k+1) via

xred(k+1) = T †x(k+1). (3.15)

So in order to update the reduced order model, we not only need to compute the
original high order model, but we also have to do two linear projections. As a result the
number of calculations required to compute (3.11) is actually larger than the number
of calculations required to update the original high order model.
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3.3 Partitioning the large-scale model

3.3.1 Introduction

Generally, by far the most time consuming step in updating (3.11) using Procedure
3.1 is the update of the original state vector via (3.9). Therefore the computational
complexity of a model evaluation could be severely reduced if it would not be neces-
sary to compute (3.9) for all of the original state elements, but only for a subset of the
original state elements. For this purpose, we will create an approximate model that
only requires a part of the complete full state to be calculated. Later in this section, it
will be shown that the information in the new state that is lost by only using a part of
the state update function, can be recovered using spatial and temporal correlations.

In order for this acceleration to be possible, we thus require that the original state
can be partitioned into at least two parts for which the update can be calculated sepa-
rately. Mathematically this means that we assume that (3.9) can be rewritten as:�

x[1](k+1)
x[2](k+1)

�
=

�
f[1](x(k),u(k))
f[2](x(k),u(k))

�
. (3.16)

Note that it is allowed to reorder the elements of the original state x(k) before parti-
tioning the state model (3.9) as in (3.16). A requirement for the partition (3.16) is that
after partitioning the time required to compute f [1](·) should be significantly less than
the time required to compute the update of the original full order model f (·).

In the remainder of this section, we will use the partitioned model (3.16) to ap-
proximately compute a model evaluation of (3.11) using less CPU time. In order to
compute this approximate model evaluation, the following procedure will be used:

Procedure 3.2 Using the partitioned model (3.16), we will use the following proce-
dure to approximately compute the state equation (3.11):

1. Expand the reduced order state to approximate x(k) via (3.14).

2. Compute the partial state x[1](k+1) via:

x[1](k+1) = f[1](x(k),u(k)). (3.17)

3. Compute the new reduced order state x̃red(k + 1) using only x[1](k + 1). This
reduced order state x̃(k+1) should be computed such that it minimizes

‖xred(k+1)− x̃red(k+1)‖2, (3.18)

with xred(k+1) computed using (3.11).

In Procedure 3.2 only the elements in x [1](k+1) are computed using the first prin-
ciples model. Only computing a partial state update has two important consequences.
Firstly, computing a state update using Procedure 3.2 is expected to be faster than
computing the state update using Procedure 3.1, because computing the partial state
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update using f[1](·) is simpler than computing a full state update. A second conse-

quence is that if we only compute the state elements x [1](k + 1), we can no longer
exactly calculate the new reduced order state using (3.15) in the third step of the pro-
cedure. The new reduced state xred(k + 1) now has to be approximated using only
those elements x[1](k+1) of the full state vector that are calculated.

The method that is used to construct x̃ red(k+1) using only x[1](k+1) will greatly
influence the accuracy of states computed using Procedure 3.2. In the remainder of
this section two methods to perform this estimation will be discussed.

The first method is based on a least squares collocation scheme. Then, a second
method is introduced that incorporates more knowledge of the system to reduce the
estimation error. Both estimators of xred(k + 1) in this section will be linear, since
these allow a rapid computation of the estimate for the new reduced state.

Even though we only use linear estimators for the new reduced state, the acceler-
ated model will remain nonlinear, since we update x [1](k+1) with the first part of the
original nonlinear model (see 3.16). Therefore the methods discussed in this section
can also be interpreted as a partial linearization of the original system.

3.3.2 Least squares based estimation of xred(k+1)

The first method to perform the estimation of xred(k+1) based on x[1](k+1) is a least
squares based method inspired by the missing data problem in [49]. It can be shown
that the reduced order state xred(k+1) computed using the Galerkin projection (3.11)
is also the solution to the following least squares problem:

xred(k+1) = arg min
x̂red (k+1)

‖ f (Txred(k),u(k))−Tx̂red(k+1)‖2. (3.19)

So the new reduced order state is that state which minimizes a least squares criterion
in which all states are weighted equally. If we choose to compute only a subset of the
original state, a natural method to obtain an approximation of the new reduced state
vector would be to replace the least squares criterion over all elements with a criterion
that only takes into account the elements of the partial state x [1](k+1). If we partition
the long original state vector as in (3.16) and only compute the elements in x [1](k+1),
the new criterion will thus be:

x̃red(k+1) = arg min
x̂red(k+1)

‖ f[1](Txred(k),u(k))−T1x̂red(k+1)‖2, (3.20)

where T1 is a matrix consisting of the rows of T that correspond to the elements in
x[1](k+1). The solution of this least squares problem is given by:

x̃red(k+1) = T †
1 f[1](Txred(k),u(k)), (3.21)

where T †
1 is the pseudo inverse of T1. By doing so, our procedure to update x red(k)

becomes:

1. Expand the reduced state: x(k) = Txred(k) via (3.14).
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2. Compute new partial state via x[1](k+1) = f[1](x(k),u(k)).

3. Compute the approximate new reduced state x̃ red(k+1) = T †
1 x[1](k+1).

This new procedure involves considerably less computation time, because the compu-
tation time of step 2 (the most time consuming) and 3 are drastically decreased, since
the operators f (·) and T † are replaced by operators f [1](·) and T †

1 of lower computa-
tional complexity.

The approximate new reduced order state x̃ red(k + 1) is the best possible linear
estimate using only x[1](k+1). Experience with this technique shows that quite often
it is possible to generate a reasonable approximation even if x [1](k +1) contains only
a limited fraction of the total number of states.

3.3.3 Improved estimation using spatial correlation information

In the second step of Procedure 3.2, we only evaluate the state equation f [1](·) to

compute a partial new state x[1](k + 1). As a result we do not have the information
to compute xred(k + 1) that was contained in the neglected vector x [2](k + 1). In this
subsection we will show how a part of this lost information can be recovered without
losing the advantage of a shorter computation time.

To recover some of the information contained in x [2](k+1) during the computation
of x̃red(k+1), we will use a stochastic framework, even though all variables x [1](k+1),
x[2](k + 1), u(k) are deterministic variables. Using this stochastic framework, better
reconstruction of xred(k + 1) can be computed by taking into account the correlation
between x[1](k + 1) and x[2](k + 1), but also, as will be shown later, the correlation
between xred(k + 1) and the same vector one time step earlier (ie. xred(k)) as well as
the correlation between xred(k+1) and u(k). The correlation between x [1](k+1) and
x[2](k+1) gives us spatial information, because it relates states at the same time. The
correlation between xred(k + 1) and xred(k) and the correlation between xred(k + 1)
and u(k) gives us temporal information, since it relates quantities at different times.

In this subsection we will improve the estimate x̂red(k + 1) using correlation be-
tween x[1](k+1) and x[2](k+1) (spatial information). In the next section the estimator
will be further improved by adding temporal information.

Our method for improving the accuracy of the reconstructed state x̃ red(k + 1) is
based on the notion of the BLUE [3]. The BLUE was already discussed in section
2.3.3 but is summarized here for convenience. If two random variables X and Y have
means µX and µY and covariances:

E



X
Y

�
[X Y ] =



RXX RXY

RYX RYY

�
, (3.22)

then the best linear unbiased estimate of X given Y = y is:

x̂ = µX +RXYR−1
YY (y− µY ). (3.23)

The error covariance matrix of this estimate is given by:

E(x− x̂)(x− x̂)T = RXX −RXYR−1
YY RYX . (3.24)
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In the remainder the BLUE will also be used to exploit the correlations between
x[1](k) and x[2](k) to improve the accuracy of the reconstructed new reduced order state
x̃red(k +1). Similar to equation (3.22), the required spatial covariance information to
enable the use of the BLUE is made up of both the mean µ x and the covariance matrix

Rxx of x(k) = [x[1](k)
T

x[2](k)
T
]T :

µx(k) =

�
µx[1](k)
µx[2](k)

�
= Ex(k) (3.25)

Rx(k)x(k) =



Rx[1]x[1] Rx[1]x[2]

Rx[2]x[1] Rx[2]x[2]

�
= E(x(k)− µx(k))(x(k)− µx(k))

T . (3.26)

Assuming that the required means and covariance information is available, we can
use the spatial correlations to improve the accuracy for the approximate new reduced
order state x̃red(k + 1) in the third step of Procedure 3.2, using the BLUE equations.
The improved reconstruction step for x̃ red(k+1) is presented in the following propo-
sition:

Proposition 3.3 The linear reconstruction technique for x̃ red(k+1) that minimizes

E‖x̃red(k+1)− xred(k+1)‖2 (3.27)

using x[1](k + 1) (see (3.16)), mean µx(k) (see (3.25)) and covariance matrix Rx(k)x(k)
(see (3.26)) in the third step of Procedure 3.2 is:

x̃red(k+1) = µxred(k+1)+�
[T †][1] + [T †][2]Rx[2](k+1)x[1](k+1)R

−1
x[1](k+1)x[1](k+1)

�
(x[1](k+1)− µx[1](k+1)), (3.28)

in which µxred(k+1) is given by:

µxred (k+1) = T µx(k+1) = T µx(k), (3.29)

and where [T †][1] and [T †][2] consist of the columns of T † corresponding to x[1](k+1)
and x[2](k+1):

T † =
�
[T †][1] [T †][2]

�
. (3.30)

Proof After substituting xred(k+1) for X and x[1](k+1) for Y in the BLUE equation
(3.23) above, we obtain the following expression for x̃ red(k+1):

x̃red(k+1) = µxred (k+1) +Rxred(k+1)x[1](k+1)R
−1
x[1](k+1)x[1](k+1)

(x[1](k+1)− µx[1](k+1))
(3.31)

in which µxred(k+1) is the mean of xred(k + 1) and Rxred (k+1)x[1](k+1) is the covariance

between xred(k + 1) and x[1](k + 1). In the previous expression, covariance matrix
Rxred (k+1)x[1](k+1) is equal to:

Rxred (k+1)x[1](k+1) = E(xred(k+1)− µxred(k+1))(x
[1](k+1)− µx[1](k+1))

T (3.32)
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= E

��
[T †][1] [T †][2]

�� x[1](k+1)− µx[1](k+1)
x[2](k+1)− µx[2](k+1)

�
(x[1](k+1)− µx[1](k+1))

T

�

= [T †][1]Rx[1](k+1)x[1](k+1) + [T †][2]Rx[2](k+1)x[1](k+1), (3.33)

Equation (3.28) now follows after substituting (3.33) in (3.31).

By applying (3.24) the error covariance matrix of the BLUE reconstruction
x̃red(k+1) is:

E

�
(x̂red(k+1)− xred(k+1))(x̂red(k+1)− xred(k+1))T

�
=

[T †][2]

�
Rx[2](k+1)x[2](k+1)−Rx[2](k+1)x[1](k+1)R

−1
x[1](k+1)x[1](k+1)

Rx[1](k+1)x[2](k+1)

�
[T †][2]

T
.

(3.34)

The expected approximation error between x red(k + 1) and x̃red(k + 1) (see (3.18))
can be calculated by computing the trace of the error covariance matrix defined in
(3.34). As a result, we can use the expression for the error covariance matrix (3.34) to
determine a partition (3.16) such that on average the we obtain an optimal approximate
new reduced order state x̃red(k+1).

The required spatial means and covariance information (3.25)-(3.26) can be esti-
mated offline using a procedure that is similar to the manner in which the method of
snapshots for POD models reduction computes the matrix Px (see section 2.4.2). Using
inputs similar to those expected in practice, we simulate a state sequence x(1),x(2),
. . . ,x(N) using the reduced order model (3.3). The required mean in (3.25) is esti-
mated using:

µ̂x(k) =
1
N

N
k=1

x(k). (3.35)

The required spatial covariance matix is then estimated using:

R̂x(k)x(k) =
1
N

N
k=1

(x(k)− µ̂x(k))(x(k)− µ̂x(k))
T . (3.36)

Note that the estimated mean µ̂x(k) and covariance matrix R̂x(k)x(k) are dependent on
the input signal u(1), . . . ,u(N) used to generate the state sequence x(1), . . . ,x(N). For
good results the input sequence u(k) used to estimate µ̂x(k) and R̂x(k)x(k) in the offline
experiment should resemble the inputs used when applying the accelerated Procedure
3.2.

Since that the BLU estimate is optimal given the available spatial information in
(3.25)-(3.26), the BLU estimate (3.28) is better than the least squares based estimate
(3.21), provided that the spatial information (3.25)-(3.26) is accurate. The fact that
the spatial information has been estimated (and is thus only approximately known)
can cause that the BLUE is not always the better estimator.
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3.3.4 Improved estimates using both spatial and temporal covari-
ances

So far we have used the BLUE to incorporate only spatial information, i.e. we have
only used the relation between state elements at the same time instant. We can re-
fine the estimate even further by also including temporal information, i.e. the relation
between the state xred(k + 1) and the previous state xred(k) and previous input vec-
tor u(k). Since the system is in state-space form, all information about the past is
contained in these two quantities.

The BLUE constructs an approximate reduced order state x̃ red(k+1) from x[1](k+
1), xred(k) and u(k) using the following relation:

x̂red(k+1) = µxred (k+1) +VW−1

�
� x[1](k+1)− µx[1](k+1)

xred(k)− µxred(k)
u(k)− µu(k)

�
� (3.37)

with

V =
�
Rxred (k+1)x[1](k+1) Rxred(k+1)xred(k) Rxred (k+1)u(k)

�
(3.38)

and

W =

�
��

Rx[1](k+1)x[1](k+1) Rx[1](k+1)xred(k) Rx[1](k+1)u(k)
Rxred(k)x[1](k+1) Rxred(k)xred (k) Rxred(k)u(k)

Ru(k)x[1](k+1) Ru(k)xred(k) Ru(k)u(k)

�
�� . (3.39)

This result follows directly from the BLUE relation (3.23). Like in the previous sec-
tions the required means and covariance matrices V and W will have to be estimated
in a separate experiment.

Using generic BLUE error covariance equation (3.24) we can show that the ex-
pected covariance matrix of (x̃ red(k+1)− xred(k+1)) is given by:

E

�
(x̃red(k+1)− xred(k+1))(x̃red(k+1)− xred(k+1))T

�
=

Rxred(k+1)xred(k+1)−VW−1VT . (3.40)

The new BLU estimator that also includes the temporal information will in general
be more accurate than the previous BLU estimate. Accuracy is especially improved if
there is significant correlation between the current reduced state and the previous state
and input (e.g. slowly varying systems).

The required means µu(k), µxred (k), µx[1](k+1) and covariance matrices V and W
have to be estimated before BLUE can be used to compute x̃ red(k + 1). To estimate
this information a long input sequence u(k) for k = 1, . . . ,N is used to generate states
x(k) using the full order model (3.9). Using this data we construct the vector ξ (k) as:

ξ (k)T = [x[1](k+1)T xred(k)T u(k)T ]. (3.41)
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The means µu(k), µxred (k) and µx[1](k+1) can then be estimated via:

�
� µ̂u(k)

µ̂xred (k)
µ̂x[1](k+1)

�
� = µξ =

1
N

N
k=1

ξ (k). (3.42)

The covariance matrix W can be estimated using:

Ŵ =
1
N

N
k=1

(ξ (k)− µ̂ξ )(ξ̂ (k)− µ̂ξ )T . (3.43)

Finally V can be estimated the following equation:

V̂ =
1
N

N
k=1

(xred(k+1)− µxred(k+1))(ξ (k)− µ̂ξ )T . (3.44)

If all the required means and covariances are accurately known, the new BLUE
reconstruction using both spatial and temporal information will be more accurate than
both the least squares method and the BLUE using only temporal information.

In practice however, if the means and covariances in (3.37) are not determined
accurately enough, then (3.37) even be worse than the previously discussed meth-
ods. Similarly, if the required means and covariances have been estimated using an
unrepresentative input sequence, using spatial and temporal covariance could cause
inaccurate results.

3.3.5 Practical issues for implementation

So far, we have not mentioned how the partitioning (3.16) should be done. The chosen
partition can seriously influence the accuracy of the accelerated model. An optimal
partition for the BLUE techniques can be found by searching for that partition that
minimizes the expected error (3.27). The expected error (3.27) can be computed by
taking the trace of (3.34) or (3.40), depending on whether (3.28) or (3.37) is used to
compute x̃red(k+1).

Finding the optimal partition (3.16) can thus be formulated as a optimization prob-
lem. Unfortunately, the complexity of the optimization problem increases exponen-
tially with the state dimension nx, because the number of possible partitions increases
exponentially with nx. Sometimes however, it may be possible to create a good parti-
tion using physical insight in the process model.

In both BLU estimators (3.28) and (3.37) the inverse of an auto-covariance matrix
is required. Often the auto-covariancematrices will be ill-conditioned. If this is indeed
the case, it is advisable to approximately compute the required inverse matrix using a
truncated SVD, see [31].
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Figure 3.1 Simulated heated plate example. The plate is heated or cooled along the complete
edges on all sides. The physical equation are solved on a 32 by 32 grid using explicit Euler
integration.

3.4 Simulation example

3.4.1 Simulation model

In this section the presented methods of section 3.3 will be illustrated by a simula-
tion example. The chosen example is that of an iron solid square plate that is heated
and cooled at the edges, see Figure 3.1. Before applying the previously described
approximation techniques, first the plate model will be discussed.

The sides of the plate are L = 0.5 meters in length, the height of the plate is chosen
to be h = 0.01 meters. All required material properties for iron are obtained from [41].
Each side of the solid plate is connected to a surface of which the temperature can be
controlled. The temperatures of each surface will serve as an input. The model thus
has four inputs.

The model of the plate is constructed from the energy balance over an infinitesimal
small surface area at spatial coordinates (p,q)2:

ρ c h dp dq
∂T (p,q,t)

∂ t
= ∇ · J(p,q,t), (3.45)

in which ρ is the mass-density of the plate, c is the specific heat of the plate. The ∇

2We use the spatial coordinates (p,q) instead of the more conventional spatial coordinates (x,y) to
prevent confusion with the state vector x(k) and measurement vector y(k).
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operator is defined as:

∇ =

� ∂
∂ p
∂
∂q

�
. (3.46)

The function J(p,q,t) : R
3 → R

2 is a vector function that represents the heat transfer
at location (p,q) at time t. The heat transfer function J(p,q, t) is given by:

J(p,q,t) = λ (T (p,q,t))∇T (p,q,t), (3.47)

with λ (T (p,q,t)) a temperature-dependent heat conductivity coefficient. For many
materials reasonably accurate models can be derived using a constant heat conduc-
tivity. Using a constant λ would result in a linear model. In the simulation example
however, it was assumed that λ (T (p,q,t)) is temperature dependent:

λ (T (p,q,t)) =
1

2560
T (p,q,t)3 +

3
8
T (p,q,t)+80. (3.48)

The heat conductivity as a function of temperature is plotted in Figure 3.2. A temper-
ature dependent heat conductivity is physically more accurate than the more common
constant heat conductivity assumption. It should be noted that this particular heat
conductivity function is not based on physics. Instead the function was chosen such
that the model would have some reasonable nonlinear characteristics such that it pro-
vides a more interesting simulation model for testing the previously described model
approximation techniques.

The model (3.45)-(3.48) can be rewritten in the nonlinear state-space form using
a finite differences method. The finite differences method imposes a grid on the plate.
We have chosen to use a grid of 32 by 32 elements. In each element the temperature
and all other material properties are assumed to be constant. In the remainder we
shall denote the p-coordinate (horizontal position) of a column of grid-cells as p(k p)
with kp ∈ {1, . . . ,32}. Similarly the q-coordinate (vertical position) of a row of cells
is denoted as q(kq) with kq ∈ {1, . . . ,32}. Spatial derivatives with respect to spatial
coordinate p and q are approximated using finite differences. For example, the spatial
derivative with respect to p is approximated using the following equation:

∂T (p,q,t)
∂ p

����
p=p(kp),q,t

≈ T (p(kp +1),q,t)−T(p(kp),q,t)
p(kp +1)− p(kp)

. (3.49)

The partial derivatives with respect to q are approximated in the same manner.
After approximating the spatial derivatives using finite differences, the resulting

approximate model is a set of 1024 nonlinear ordinary differential equations. These
equations are solved using a simple explicit Euler method, using an integration time
interval of 20 seconds.

The resulting model is a model of the form (3.9)-(3.10). The state x(k) in the
model represents the temperature at each of the 1024 grid elements. The inputs u(k)
are the temperatures of each of the sides.
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Figure 3.2 Plot of the chosen temperature-dependent heat conductivity function λ (T ) as given
by (3.48).

The input signal for each of the sides is chosen to be a randomly generated series
of steps. An example realization of the applied input signals is depicted in Figure 3.3.
For k = 0,40,80, . . . a new temperature for each of the sides chosen randomly:

u(k) ∼ N(0,Q) with Q = diag{225,225,100,100} (3.50)

with u(k) for k = 0,40,80, . . . a white noise process. For k �= 0,40,80, . . ., (the inter-
mediate sampling instants) the input at time k is determined via:

u(k) = u(k−1). (3.51)

Since the explicit Euler method is used to approximately solve the nonlinear dif-
ferential equations, it is easy to partition the state update as in (3.16). It should thus be
relatively straightforward to apply the model approximation techniques as described
in the previous section.

The computation time required to update only that part of the state vector that is
contained in x[1] scales linearly with the dimension of x [1]. Denoting the computation
time required for a full model update as t f ull and the computation time required to
update only the elements in x [1] as tx[1] , it thus holds that:

tx[1] ≈ dim(x[1])
1024

t f ull . (3.52)

Before the model approximation techniques can be applied, a reduced order model
is required. A reduced order model of the plate has been constructed using POD model
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Figure 3.3 Example input signal u(k). The depicted input signal represents the imposed tem-
peratures at the bottom of the heated plate. Similar signals are applied to the other sides of the
plate.

reduction as described in 2.4.2. Using the POD technique a very good approximative
model could be constructed using a reduced order model of only 25. The input data
that was used for estimating the covariance matrix Rx(k)x(k) (required determining the
projection matrix T ) has been estimated using a 2000 point simulation run, with inputs
chosen as described above.

3.4.2 Model acceleration results

In the previous section we have derived both a full-order model of the form (3.9) as
well as a reduced order model of the form (3.11) for the heated plate. In this section we
will apply the techniques described in the previous section to accelerate (approximate)
evaluations of the reduced order model. Specifically, we will use the method outlined
in Procedure 3.2.

The first step of Procedure 3.2 requires that we have a reduced order model avail-
able of the form (3.11). Such a reduced order model has already been derived at the
end of the previous section. For the second step it is required that partial state model
evaluations can be computed. As argued at the end of the previous section, this too
can be easily accomplished for our heated plate model.

Before we can compute partial state updates we first need to partition the full
order state x(k) into x[1](k) and x[2](k) (see (3.16)). In this simulation example it has
been chosen to distribute the states x[1](k) evenly across the heated plate in a square
pattern, an example of such a pattern is shown in Figure 3.4. The number of computed
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Figure 3.4 Illustration of square pattern chosen for elements x[1]. The location of the elements
of x[1] are represented by black squares.

elements per side was varied from 2 to 24. Thus the number of states in x [1](k) was
varied from 4 to 576.

The final step in the computationally faster Procedure 3.21 is to compute the ap-
proximate new reduced order state x̃ red(k + 1) using only the elements in x [1](k + 1).
In order to compute x̃red(k + 1) three methods have been presented in the previous
sections:

• using the least squares method, see (3.21);

• using spatial correlations, see (3.28);

• using both spatial and temporal equations (3.37).

The required covariance matrices for the methods that use correlations are esti-
mated using a separate experiment. For this experiment 5000 computed states are
generated using inputs as described in (3.50)-(3.51). Then the required covariance
matrices for the method using only spatial correlations are estimated using (3.35)-
(3.36). The required covariance information for the method using both spatial and
temporal correlations is estimated using (3.41)-(3.44).

In order to compare the accuracy of the different accelerated models, we need to
choose an error criterium. The criterium that will be used is a scaled one step ahead
prediction criterium on a new set of Nval = 1000 point of validation data:

Err =
1

1024

Nval
k=1

1
Nval

‖xred(k+1)− f f ast(xred(k),u(k))‖2, (3.53)
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Figure 3.5 The average one step ahead approximation error (3.53) as a function of the number
of elements in x[1] for the heated plate example. The three lines correspond to the accuracy
of the reconstruction in the third step of Procedure 3.2. For reference the accuracy of a linear
model identified using prediction error identification methods is also provided (horizontal line).

with u(k) a new set of inputs generated using (3.50)-(3.51) and x red(k) the correspond-
ing new set of reduced order state vectors. The scaling factor 1/1024 is used such that
the error measure corresponds to the averaged squared prediction error per grid ele-
ment of the plate. The results of each of the three partitioning variants are plotted in
Figure 3.5.

For reference, a linear model of the form:

xred(k+1) = Âxred(k)+ B̂u(k) (3.54)

has been estimated as well. The matrices Â, B̂ have been determined using prediction
error identification using the same data that was used to determine the covariance
matrices for the partitioning methods. The prediction error of the linear model is also
plotted in Figure 3.5.

The least squares method is able to produce good results for dim(x [1]) > 200. With
good results it is meant that the method results in smaller prediction errors than the
purely linear model (3.54). Since good results can be obtained using dim(x [1]) > 200,
(3.52) an approximate model evaluation using Procedure 3.2 can be evaluated approx-
imately five times faster than the reduced order model original model (see (3.52)).
Note that the least squares method cannot be implemented for dim(x [1]) < 25. This is
because the left inverse T †

1 in (3.21), does not exist for these cases.
The accelerated model that exploits knowledge of the spatial covariances is more

accurate than the least squares model, irrespective of the dimension of x [1]. As a
result, good accuracy is already obtained starting dim(x [1]) > 100, so that it is possible
to construct a good approximative model that is approximately ten times faster than
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Table 3.1 Accuracy of the faster heated plate models obtained using partitioning. The accuracy
of each partitioning method is expressed using the one step ahead prediction error measure as
defined in (3.53). The simulation time to compute 1000 model evaluations for each of the
partitioning methods is provided as well.

dim(x[1]) Errls Errsp Errsp+temp tls tsp tsp+temp

4 - 6.51 6.71 ·10−4 - 9.2s 10.7s
36 0.19 6.2 ·10−2 1.1 ·10−4 14.1s 14.6s 15.7s
100 8.1 ·10−3 4.5 ·10−3 1.2 ·10−4 29.1 28.3 30.8
196 2.2 ·10−3 1.4 ·10−3 1.2 ·10−4 51.1s 50.6s 52.9s
324 2.2 ·10−3 1.2 ·10−3 1.4 ·10−4 98.4s 100.4s 101.9s

the original model.
If an approximate model is constructed using both spatial and temporal correla-

tions, the accuracy of the resulting model increases dramatically. Very accurate re-
sults are already obtained for dim(x [1]) = 4. As a result, it is thus possible to construct
approximate models that require considerably less computations!

3.5 Identifying an approximate quasi-LPV model

3.5.1 Introduction

An alternative for the partitioning method described in the previous sections is the
identification based approach. In this approach the reduced order model (3.3)-(3.4)
derived from the original first principles model, is approximated using a computa-
tionally simpler black box model, while retaining the physical meaning of the state
vector xred(k). The objective in the identification based approach is to approximate
the already available (but computationally expensive) reduced order model

xred(k+1) = fred(xred(k),u(k)) (3.55)

with a model with an user defined simpler generic black box model structure
fid(xred(k),u(k),θ ):

xred(k+1) = fid(xred(k),u(k),θ ), (3.56)

with θ a vector of free model parameters.
The main difference between the identification based approach presented in this

section and the partitioning approach discussed in the previous sections is that once
the resulting faster approximation model f id(·) (3.5) has been identified, the original
model will no longer be required to compute (partial) state updates as in Procedure
3.1.
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The identification problem posed in this section is to approximate the static non-
linear function fred(·) with nx + nu inputs and nx outputs by a simpler model of the
form fid(·).

Especially for nonlinear identification many different model structures for f id(·)
can be chosen. Examples of nonlinear model structures found in the literature are
Wiener and Hammerstein models [103], NARX [22] models, NARMAX models, Lin-
ear Parameter Varying models [94], etcetera. The model structure should be deter-
mined such that:

∃θ s.t. E‖ fred(xred(k),u(k))− fid(xred ,u(k),θ )‖2 < α (3.57)

with α an user defined limit for the largest acceptable expected prediction error. Find-
ing a model structure which satisfies this criterion is not straightforward. In practice
model structure selection is performed using either prior knowledge or by trial and
error.

The choice to approximate the reduced order model instead of attempting to ap-
proximate the original full order first principles model is mainly motivated by prac-
tical issues. Approximating the full order model would quickly become infeasible,
because the manipulations required in an identification algorithm are computationally
infeasible when the state vector x(k) has a very high dimension. Secondly, even if a
successful identification of the full order model would be possible, the model would
still need to be reduced in order to be used for state estimation applications.

The identification based approach can be split up into two steps. First a model
structure is selected. Once the model structure has been selected, model parameters θ
should be identified such that the identified model provides the best possible approxi-
mation to the original model.

In this section the quasi-LPV model structure will be used to approximate the
model (3.55). A quasi-LPV model uses a state-dependent and input-dependent linear
combination of linear models to approximate the original model’s behavior:

fid(xred(k),u(k)) = A0(θ )xred(k)+B0(θ )u(k)+ xo f f ,0+
M

m=1

φm(xred ,u(k),θ )
 
Am(θ )xred(k)+Bm(θ )u(k)+ xo f f ,m

!
, (3.58)

with (A0,B0,xo f f ,0) the state-space matrices representing the best global linear model
and (Am,Bm,xo f f ,m) component linear models that are summed after being weighted
according to scheduling functions φm(·). Due to the scheduling functions φm(·), the
behavior of the qLPV model differs from the basis linear model (A 0,B0,xo f f ,0). The
scheduling functions determine how the modelled behavior should change depending
on the current state and inputs to the model.

The difference between a standard LPV model and a quasi-LPV model is that in a
standard LPV model the scheduling functions φ(·) are not allowed to be a function of
either the inputs u(k) or the current state x(k).

We will refer to model structures specified by (3.58) as quasi Linear Parameter
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Varying (qLPV) models, but in the literature these model structures are also referred
to as local linear models [94] or fuzzy models [6].

The approach to identify an approximate state model was first suggested in [40].
In this work a linear model structure was used to approximate the f red(·). Com-
pared to the linear model structure used in [40], the model structure (3.58) is obvi-
ously more flexible to describe the nonlinear behavior of the original model. Even
using a relatively small number of component models and relatively simple schedul-
ing functions φm(·) a wide variety of nonlinear models can be approximated. The
main drawback of using the qLPV model structure is that even for a relatively small
number of components models Am,Bm,xo f f ,m the identification problem is already far
more difficult than for linear models. Not only is it necessary to determine a sin-
gle linear model given by A0,B0,xo f f ,0, but we also need to find optimal component
models Am,Bm,xo f f ,m and scheduling functions φm(·) for m = 1,2, . . . ,M. A second
problem with using qLPV type of model structures, is that it is hard to guarantee
that the identified models will be stable. It can be shown that even when all models
A0,B0, . . . ,AM,BM are stable, the resulting state dependent sum of stable models can
be unstable [81].

The problem of identifying (q)LPV models has been extensively studied in nonlin-
ear identification literature. Current methods to identify model structures of the form
(3.58) can be divided into the following categories:

• Simultaneous identifications of scheduling functions φm(·) and models Am, Bm,
xo f f ,m for m = 0, . . . ,M, see for instance [95][7][54].

• Functions φm(·) are assumed known, identify only A0,B0,xo f f ,0 . . .AM, BM,
xo f f ,M.

• Two stage methods: first determine scheduling functions φm(·) then identify
Am,Bm,xo f f ,m for m = 0,1, . . . ,M [43][6].

All the identification approaches in the literature use experimental data consisting of
measured inputs u(k) and measured outputs y(k) to perform the identification. An
explicit physical plant model of the form (3.55) is never assumed available. As a
result the goal in the identification problem is to find that model which best predicts
the output of the model as a function of its inputs. The interpretation of the state in this
problem setting is of no consequence. Thus the state vector x red(k) of the identified
qLPV model will not have the same physical interpretation as in (3.55).

In this section we will introduce a new method to identify qLPV models. There
are two main differences between our approach and the approaches in the literature.
The first difference is that our procedure will use simulation data
ZN = u(1),xred(1), . . . ,u(N),xred(N) generated with (3.55) instead of measured input
and output signals. The advantages of using simulation data instead of measured data
are threefold:

• In simulation data we know the state xred(k) which will allow us to retain the
physical interpretation of the state vector xred in the identified model.
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• To obtain suitable practical data (expensive) experiments may be required, while
simulation data only requires computer time.

• There is no measurement noise in simulation data.

The second difference between our method and qLPV identification methods in
literature is that in conventional qLPV identification methods, an available first prin-
ciples process models is not used, while in our method the availability of the first
principles model is a strict requirement.

Our approach is a two stage method:

1. In contrary to most qLPV identification methods we shall first determine matri-
ces A0,B0,xo f f ,0 . . .AM,BM,xo f f ,M in the model structure (3.58). These matri-
ces are determined using linearizations of the reduced order model (3.55) and
by applying techniques similar to those in model reduction.

2. Then in a second step we parameterize functions φm(·,θ ) and estimate the opti-
mal values for θ using simulation data.

The first step of the described method is presented in section 3.5.2, the second step
of the method is discussed in section 3.5.3. A discussion of some theoretical aspects
of the proposed methods and practical issues for its application are contained in 3.5.4.
Section 3.6 illustrates the use of the proposed method in a simulation example.

3.5.2 Determination of A0,B0,xo f f ,0, . . . ,AM,BM,xo f f ,M

In this section a method is presented to determine linear models parameterized by
A0,B0,xo f f ,0, . . . ,AM,BM,xo f f ,M in (3.58). To determine these matrices and vectors,
data will be used that is generated by the available simulation model (3.55) :

Assumption 3.4 The data ZN = {u(1),xred(1), . . . ,u(N),xred(N)} is generated by the
reduced order model (3.55). It will be assumed that the available data Z N is represen-
tative for the whole working area of the reduced order model (3.55).

The assumption above states that the dataset ZN should be such that it is possible
to find a model of the form (3.58) that is accurate in the entire working area. For
nonlinear models it is not trivial to verify that a given dataset has this property. In our
identification procedure we will ignore this problem for now.

The method presented in this section to determine A0,B0,xo f f ,M , . . . ,AM , BM,
xo f f ,M consists of the following steps.

1. Determine A0,B0,xo f f ,0 such that the model given by A0,B0,xo f f ,0 is the best
linear model for the available simulation data ZN .

2. Determine the matrices Al
1,B

l
1,x

l
o f f ,1, . . .A

l
N ,Bl

N ,xl
o f f ,N and coefficients
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β l
1(k), . . . ,β

l
N(k) of an intermediate LPV expansion f long

id (·) of the form:

f long
id (xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0+

N
m=1

β l
m(k)

�
Al

mxred(k)+Bl
mu(k)+ xl

o f f ,m

�
(3.59)

such that the resulting expansion matches the reduced order model f red(·) for
all (xred(k),u(k)) ∈ ZN :

fred(xred(k),u(k)) = f long
id (xred(k),u(k)) ∀ (xred(k),u(k)) ∈ ZN . (3.60)

Note that the length of the expansion (3.59) is N, the number of simulation data.
As a result, this expansion is generally very long.

3. In this step we use the previously computed expansion f long
id (·) to compute a

shorter expansion f short
id (·) of the form:

f short
id (xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0+

M
m=1

βm(k)
 
Amxred(k)+Bmu(k)+ xo f f ,m

!
(3.61)

with M << N. For this new expansion f short
id (·) new matrices A1,B1, . . . ,AM,BM ,

vectors xo f f ,1, . . . ,xo f f ,M and coefficients β1(k), . . . ,βM(k) will be computed
such that for the available simulation data ZN the prediction error of the new
shorter expansion is smaller than an user-defined low constant α :

�N
k=1 ‖ fred(xred(k),u(k))− f short

id (xred(k),u(k))‖2�N
k=1 ‖ fred(xred(k),u(k))‖2

< α , (3.62)

with α some chosen small value, for instance α = 0.01.

The first step of the procedure a model A0,B0,xo f f ,0 is identified that accounts any
possible linear trends in the data ZN .

In the second step the data u(m),x(m) is mapped to a long expansion in matrices
Al

m,Bl
m,xo f f ,l , for m = 1, . . . ,N.

After the data has been mapped to the matrices Al
m,Bl

m,xo f f ,l , for m = 1, . . . ,N, we
can use techniques similar to those used in model reduction to reduce the length of the
expansion.

Step 1: Determination of A0,B0,xo f f ,0

The model structure (3.58) can be interpreted as follows. The original model (3.55)
can be approximated to some extent using just a linear model specified by A 0,B0,
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xo f f ,0, but due to nonlinearities in the original reduced order model (3.55) it is neces-
sary to adjust the model parameters for the various regions in the operating domain of
the original model. The changes in model parameters are parameterized by state and
input dependent linear combinations of the linear models A 1,B1,xo f f ,1 . . . ,AM,BM,
xo f f ,M .

In this interpretation the matrices A0,B0,xo f f ,0 specify the basic linear model that
is to be refined later using linear combinations of the parameter change models
A1,B1,xo f f ,1 . . . ,AM,BM,xo f f ,M. To minimize the required number of required correc-
tions, the model A0,B0,xo f f ,0 should already approximate the original reduced order
model (3.55) as good as possible.

As a result, we will determine the model A0, B0, xo f f ,0 such that it is the best
possible linear approximation to (3.55) for the intended working area. Since the data
ZN is assumed to be representative for the entire working area (see assumption 3.4),
this can be accomplished by identifying A0,B0,xo f f ,0 via:

[A0,B0,xo f f ,0] = arg min
Ã0,B̃0,x̃o f f ,0

N
k=1

1
N

""xred(k+1)− Ã0xred(k)

−B̃0u(k)− x̃o f f ,0
""2

. (3.63)

The presented least squares criterion to determine A0,B0,xo f f ,0 is linear in Ã0, B̃0 and
x̃o f f ,0. As a result, A0, B0 and xo f f ,0 can be easily determined by solving the linear
least squares optimization problem.

Step 2: Determination of f long
id (·)

The second step is to determine the matrices Al
1,B

l
1,x

l
o f f ,1, . . . ,A

l
N ,Bl

N ,xl
o f f ,N and coef-

ficients β l
1(k), . . . ,β

l
N(k) of an expansion f long

id (·) such that for all data (xred(k),u(k))∈
ZN it holds that:

fred(xred(k),u(k)) = f long
id (xred(k),u(k)), (3.64)

with fred(·) the known reduced order first principles model that is to be approximated,
and f long

id (·) defined as in (3.59).
For this purpose we introduce the following notation for the linear model

L(xred(k),u(k)) obtained by linearizing (3.55) around (x red(k),u(k)):

L(xred(k),u(k)) = A(xred(k),u(k))xred(k)+B(xred(k),u(k))u(k)
+Xo f f (xred(k),u(k)), (3.65)

with

A(xred(k),u(k)) =
∂ fred(xred ,u)

∂xred

����
xred=xred(k),u=u(k)

, (3.66)

B(xred(k),u(k)) =
∂ fred(xred ,u)

∂u

����
xred=xred(k),u=u(k)

, (3.67)
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and

Xo f f (xred(k),u(k)) = fred(xred(k),u(k))−
A(xred(k),u(k))xred(k)−B(xred(k),u(k))u(k). (3.68)

Using this notation, the following proposition can be used to construct the expansion
f long
id (·):

Proposition 3.5 Given a linear system with offset defined by A0,B0,xo f f ,0 there exists

an expansion f long
id (xred ,u(k)) defined as in (3.59) such that for all pairs (xred(k),u(k))∈

ZN it holds that:

fred(xred(k),u(k)) = f long
id (xred(k),u(k)), (3.69)

where f long
id (·) is given by:

Al
m = A(xred(m),u(m))−A0 (3.70)

Bl
m = B(xred(m),u(m))−B0 (3.71)

xl
o f f ,m = Xo f f (xred(m),u(m))− xo f f ,0 (3.72)

β l
m(k) =

	
1 for m = k
0 for m �= k

(3.73)

for m = 1, . . . ,N.

Proof Using the definitions (3.65)-(3.68) it is easily verified that for all pairs x red(k),u(k)
it holds that

fred(xred(k),u(k)) = A(xred(k),u(k))xred(k)+
B(xred(k),u(k))u(k)+Xo f f (xred(k),u(k)). (3.74)

After adding and substraction the identified model A 0,B0,xo f f ,0 we obtain:

fred(xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0 +[A(xred(k),u(k))−A0]xred(k)
+ [B(xred(k),u(k))−B0]u(k)+ [Xo f f (xred(k),u(k))− xo f f ,0]. (3.75)

Substitution of (3.70)-(3.73) in (3.75) results in:

fred(xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0+
N

m=1

βm(k)
�
Al

mxred(k)+Bl
mu(k)+ xl

o f f ,m

�
. (3.76)

And thus for all (xred(k),u(k)) ∈ ZN we have:

fred(xred(k),u(k)) = f long
id (xred(k),u(k)). (3.77)
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Step 3: Determination of A1,B1, . . . ,AM,BM and M

In the previous section it was shown that an expansion f long
id (·) can be constructed that

exactly matches fred(·) for the simulation data ZN . Still, given the length N of the ex-
pansion, it is not practical to use the obtained matrices Al

1,B
l
1,xo f f ,1 . . . ,Al

N ,Bl
N ,xo f f ,N

to construct our final model (3.58).
In this section we shall use the long expansion f long

id (·) constructed using propo-
sition 3.5 to construct a much shorter expansion f short

id (·) of length M << N with
new matrices A1,B1,xo f f ,1 . . . ,AM,BM,xo f f ,M and coefficients β1(k), . . . ,βM(k). The
resulting expansion is determined such that f short

id (·) satisfies:�N
k=1 ‖ fred(xred(k),u(k))− f short

id (xred(k),u(k))‖2�N
k=1 ‖ fred(xred(k),u(k))‖2

< α , (3.78)

in other words, using the computed matrices A1,B1,xo f f ,1 . . . ,AM,BM,xo f f ,M there
should exist coefficients β1(k), . . . ,βM(k) such that the relative prediction error (see
(3.78)) of the shorter model f short

id (·) averaged over the available simulation data Z N

should be smaller than a chosen constant α .
Before presenting the method to construct the expansion f short

id (·), we will first
introduce some notation. Define parameter vectors V s

m for m = 1, . . . ,M as:

Vs
m = [vec(Am)T vec(Bm)T xT

o f f ,m]T , (3.79)

with vec(·) the operator that transforms an arbitrary matrix into a vector, by stacking
its columns. Similarly we define parameter vectors V l

m for m = 1, . . . ,N as

Vl
m = [vec(Al

m)T vec(Bl
m)T xl

o f f ,m
T
]T . (3.80)

Using this notation the problem of finding appropriate matrices A m,Bm,xo f f ,m for
the short expansion f short

id (·) is equivalent to the problem of finding parameter vectors
V s

m for m = 1, . . . ,M.
The problem of finding vectors Vs

m for the short expansion such that (3.78) is
satisfied is not trivial, because each vector Vs

m represents a linear model. We propose
the following procedure to compute the required component models:

Procedure 3.6 The following algorithm produces parameter vectors V s
1, . . . ,V

s
M such

that (3.78) holds:

1. Set λ = 1.

2. Determine parameter vectors V1, . . . ,Vλ and coefficients β1(k), . . . ,βλ (k) for
k = 1, . . . ,N such that:

Vs
1, . . . ,V

s
λ ,β1(1), . . . ,βλ (k) =

arg min
Ṽs

1,...,Ṽ
s
λ ,β̃1(1),...,β̃λ (k)

N
k=1

"""""Vl
k −

λ
m=1

β̃m(k)Ṽs
m

"""""
2

. (3.81)
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The resulting λ parameter vectors Vs
1, . . . ,V

s
λ have the property that on average

they can best approximate the parameter vectors V l
m for m = 1, . . . ,N using a

linear combination of the obtained parameter vectors V s
1, . . . ,V

s
λ . The parame-

ter vectors Vs
1, . . . ,V

s
λ and coefficients β1(k), . . . ,βλ (k) for k = 1, . . . ,N can be

efficiently computed using a singular value decomposition.

3. Compute the prediction error of the short expansion specified by V 1, . . . ,Vλ
and coefficients β1(k), . . . ,βλ (k). If the computed error satisfies (3.78) stop.
Otherwise, λ = λ +1 and go to step 2.

The advantage of using the parameter space criterion is that the parameter vectors
Vs

1, . . . ,V
s
λ and coefficients β1(k), . . . ,βλ (k) can be computed efficiently using a SVD.

To use the SVD to compute the parameter vectors V s
1, . . . ,V

s
λ , we first need to construct

a matrix X whose columns consist of the vectors V l
1, . . . ,V

l
N :

X = [Vl
1 · · · Vl

N ]. (3.82)

If the singular value decomposition of X is denoted as:

X = USVT , (3.83)

then the parameter vectors Vs
1, . . . ,V

s
λ which satisfy (3.81) are given by the first λ

columns of U .
The corresponding matrices A1,B1,xo f f1 can be determined by applying the in-

verse of the vec(·) operator to the obtained vectors V s
1, . . . ,V

s
λ :

[Am Bm xo f f ,m] = vec−1(Vs
m), (3.84)

with vec−1(·) the inverse of the vec(·) operator:

vec−1(vec(A)) = A. (3.85)

The coefficients β1(k), . . . ,βλ (k) in (3.81) are determined by:

βm(k) = Vs
m

TVl
k. (3.86)

Note that the described method of determining the expansion f short
id (·) is neither

guaranteed to result in an expression that minimizes (3.78) using M components mod-
els, nor is the length of the resulting expansion M guaranteed to be the shortest expan-
sion that satisfies (3.78). This is to be expected, because the parameter space criterion
we used to determine our short expansion f short

id (·) is not equivalent to the relative
prediction error criterion (3.78). This can be explained by considering the relation
between both criteria. Using (3.76) and (3.61) it can be shown that:

fred(xred(k),u(k))− f short
id (xred(k),u(k)) = [Al

k −
M

m=1

βm(k)Am]xred(k)

+ [Bl
m−

M
m=1

βm(k)Bm]u(k)+ [xl
o f f −

M
m=1

βm(k)xo f f ,m]. (3.87)
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In this expression, define the parameter errors EA(k),EB(k) and Exo f f (k) as

EA(k) = [Al
k −

M
m=1

βm(k)Am] (3.88)

EB(k) = [Bl
k −

M
m=1

βm(k)Bm] (3.89)

Exo f f = [xl
o f f −

M
m=1

βm(k)xo f f ,m] (3.90)

then we see that as the parameter errors tend to zero (i.e. EA(k) → 0, EB(k) → 0 and
Exo f f (k) → 0), the relative prediction error (3.78) will also tend to zero. Since Proce-
dure 3.6 results in the matrices Am,Bm, and vectors xo f f ,m that on average minimize
the parameter errors (3.88)-(3.90), the corresponding prediction error is expected to be
small as well. Similarly, since the parameter errors quickly decrease with increasing
M, using Procedure 3.6 will in general satisfy (3.78) with M << N.

Note that the method used to determine the matrices Am,Bm and vectors xo f f ,m for
m = 1, . . . ,M is similar to model reduction using the POD technique using snapshots.
Recall from section 2.4.2 that POD model reduction using snapshots of sampled states
x(k) to determine a set of basis vectors for the reduced order model. Similarly, Pro-
cedure 3.6 uses samples of the parameters of the linearized behavior of the reduced
order model to construct a shorter expansion (3.61).

3.5.3 Identification of functions φi(xred(k),u(k),θ)

In the previous steps matrices A0,B0,xo f f ,0 . . . ,AM,BM,xo f f ,M were determined such
that for the available identification data there exists a scheduling functions β m(k) such
that the one step ahead prediction error (3.78) was smaller than a chosen value α .
The criterion was met using scheduling coefficients βm(k) as computed in (3.86). The
computed functions βm(k) using Procedure 3.6 have no structure and are highly data
dependent. For a new set of data ZN , new functions βm(k) would thus have to be com-
puted to obtain a small prediction error. Because the functions β m(k) are unstructured,
computing new functions βm(k) using (3.86) would involve linearizing f red(·), which
is computationally involved.

Since the coefficients βm(k) cannot be used as scheduling functions for com-
putational reasons, we will use structured functions φm(·) in the final model fid(·)
(3.58). Using a structured model as scheduling functions means that the model can
also be used for new data (e.g. data not the identification set Z N). In this section
scheduling functions φm(xred(k),u(k),θm) will be identified using the available simu-
lation data ZN . This requires that we first choose a model structure for the functions
φm(xred(k),u(k),θm). Since the functions φm(·,θm) are not required to have any physi-
cal interpretation, we are free to chose any model structure we would like. The choice
for structure of these functions is a tradeoff between complexity and flexibility.
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An example of a simple structure is:

φm(xred(k),u(k),θm) = [xred(k)T u(k)T 1]θm. (3.91)

The simple affine model structure for φm(·,θm) has as main advantages that the struc-
ture is linear in its parameter vector θm and the number of parameters is relatively
small. Drawback of this model structure is that such a structure may not be flexible
enough to allow for an accurate model (3.58).

If more complex scheduling functions are required, it is possible to use more com-
plex structures using for instance radial basis functions [94] or fuzzy membership
functions [6].

To select an appropriate structure for the scheduling functions, it is often helpful
to look at plots of the computed coefficients βm(k) (see (3.86)) as a function of the
states and inputs (xred(k),u(k)) ∈ ZN .

Once a structure has been selected, all that remains is to estimate the parameter
vectors θm. This can be accomplished by minimizing the prediction error criterion for
the available data ZN :

θ1, . . . ,θM = arg min
θ1,...,θM

1
N

N
k=1

‖ fred(xred(k),u(k)− fid(xred(k),u(k)),θ1, . . . ,θM)‖2 ,

(3.92)

with fid(·) defined as:

fid(xred(k),u(k),θ1, . . . ,θM) = A0xred(k)+B0u(k)+ xo f f ,0

+
M

m=1

φm(xred(k),u(k),θm)
 
Amxred(k)+Bmu(k)+ xo f f ,m

!
, (3.93)

with Am,Bm,xo f f ,m as determined in section 3.5.2.
Note that if the scheduling functions φm(·,θm) are chosen linear in θm such as in

(3.91), the resulting minimization problem is a linear least squares problem which can
be easily solved. For more complex structures that are not linear in θ m, the parame-
ters of the scheduling functions have to be determined using nonlinear optimization
techniques. For the previously mentioned structures involving radial basis functions
or fuzzy membership functions, good initial conditions can be obtained by applying
clustering methods on the computed coefficients βm(k) [6].

3.5.4 Discussion of the identification method

Use of impulse response functions

In the presented algorithm, the reduced order model (3.55) is approximated by a linear
combination of state-space models, see (3.58). The component linear models specified
by Am,Bm,xo f f ,m are identified using a least squares criterion in the parameter space.
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A drawback of such a method is that all parameter changes of equal size are considered
equally important, while in fact this is not the case. Certain parameter changes have
different consequences than others. As an example consider the following first order
scalar model without inputs and offsets:

y(k+1) =
u(k)

1−az−1 , (3.94)

with a a parameter that can change within a certain interval. Using the parameter space
criterion (3.81), a parameter change in the interval [0.5, 0.7] is indistinguishable from
a parameter changes in the interval [0.9, 1.1]. In reality the behavior of the system
will not change much for parameter variations in the first interval, but for parameter
changes in the second parameter interval, the change in system behavior is dramatic.
For a < 1, the system is stable, while for a > 1 the system is unstable!

This complication can be circumvented by modifying the qLPV model structure
(3.58) such that the linear combination of state-space models is replaced by a linear
combination of impulse response models:

fid(xred(k),u(k)) = G0(k)∗ u(k)+ xo f f ,0

+
M

m=1

φm(xred(k),u(k))
 
Gm(k)∗ u(k)+ xo f f ,m

!
, (3.95)

with Gm(k) finite length impulse response functions of length L, and ‘∗’ the convolu-
tion operator:

Gm(k)∗ u(k) =
L

κ=1

Gm(κ)u(k−κ). (3.96)

Using impulse response models, the criterion comparing model parameters directly
corresponds to comparing the impulse responses of different models. The described
method of identifying qLPV models can be easily adapted to produce models in this
form. Unfortunately for systems with slow dynamics, using impulse response models
would require the length of the impulse response function L to be very large. For such
systems using impulse response functions is impractical.

The use of long impulse response functions can be avoided using orthonormal ba-
sis expansions instead of impulse response functions Gm(k) [36]. Using orthonormal
basis functions, all impulse response functions Gm(k) are assumed to be of the form:

Gm(k) =
P

i=1

χm
i κi(k), (3.97)

with κi(k) for i = 1, . . . ,P a set of orthogonal basis functions of length L, χ m
i are

scalars that describe the required linear combination to obtain Gm(k) and P the length
of expansion. Note that the functions κ i(k) are fixed. Thus to describe a complete
impulse response Gm(k) we only need to know the P scalar coefficients χ i. Using
properly chosen basis function χ i(k) the length of the expansion (denoted as P) can be
relatively short. Methods to generate such basis function are given in [36].
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Figure 3.6 Block diagram of the LFT model structure. The block denoted by L contains all
linear dynamic elements (the component linear models of our qLPV model) of the structure,
the block N contains static nonlinearities (the scheduling functions φi(·) of the qLPV model
structure.

Practical issues when identifying φm(·,θm)

Even for simple linear parameterizations of the scheduling functions φ m(·,θm) such as
(3.91), determining parameters vectors θm can sometimes be difficult. The difficulties
occur when the least squares problem (3.92) is ill-conditioned. In such cases it is
advisable to approximately solve the least squares criterion (3.92) using a truncated
SVD, to effectively reduce the degrees of freedom in the least squares problem. For
more details, see [31][70].

Alternative for determining scheduling functions φi(·)
Another different method for determining the scheduling functions φ i(·) can be found
by rewriting the qLPV structure (3.58) as a Linear Fractional Transformation (LFT)
model. A generic block diagram of a LFT model structure is depicted in Figure 3.6.
Once the model has been rewritten in the LFT form, results from the LFT identification
literature can be used to estimate the scheduling functions φ i(·). An example of such
a technique is given in [39]. In this paper a technique is described that can be used
to estimate the nonlinear elements of the LFT structure when all linear elements are
known. This is exactly the case we have after we have determined the component
models [Ai,Bi,xo f f ,i] using the SVD-based procedure in 3.5.2.

3.6 Simulation example

To illustrate the effectiveness of the presented quasi-LPV identification method, the
method will be applied in a simulation example. In the chosen simulation example the
quasi-LPV identification method will be used to approximate the heated plate model
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described in section 3.4.1. This model is the same model that was used to illustrate
partitioning methods described in section 3.3.

Recall that in section 3.4.1 a state-space model has been derived that models the
temperature distribution of a heated iron plate on a 32×32 grid. The exact model for
the temperature distribution can be written as a nonlinear state-space model of order
1024 (i.e. dim(x(k)) = 1024). Using POD model reduction, a reduced order model has
been constructed of the form:

xred(k+1) = fred(xred ,u(k)). (3.98)

This reduced order model is the same reduced order model that was determined in sec-
tion 3.4.1. The order of the reduced order model is 25. Using the available reduced or-
der model N = 3000 points of simulation data Z N = {xred(1),u(1), . . . ,xred(N),u(N)}
is generated. The input signal u(k) is chosen to be the same stepping signal (see (3.50)-
(3.51)) that was used in the simulation example to illustrate partitioning methods, see
section 3.4.1.

In this simulation example the available data ZN will be used to construct two
approximation models: a linear state-space model and a quasi-LPV model. The linear
model is estimated so that one can judge what can potentially be gained by using a
more complex model structure such as the quasi-LPV model.

The linear state-space approximation model has the following structure:

fid(xred(k),u(k)) = A0xred(k)+B0u(k). (3.99)

Note that this chosen linear model structure does not contain an offset term x o f f ,0.
The offset term was omitted because the heated plate model does not exhibit an offset.
The matrices A0, B0 can be easily estimated by solving the linear least squares problem
(3.63).

Before continuing to construct an qLPV model, first the accuracy of the linear
model will be discussed. The accuracy of the identified linear model was evaluated
on a separate data set consisting of Nval = 1000 data points. This data set is the
same validation data that was used to test the performance of the various partitioning
methods in section 3.4.2. The error measure used to evaluate the accuracy of the linear
model is again chosen to be the average one step ahead prediction error:

Err =
1

1024

Nval
k=1

1
Nval

‖ fred(xred ,u(k))− fid(xred ,u(k))‖2 . (3.100)

Using the identified linear model the average one step ahead prediction error over the
validation data is 0.0048.

Even though the linear model is already able to closely predict the outcome of the
nonlinear reduced order model, we will still attempt to obtain an even more accurate
model using the qLPV model structure, using the identification procedure outlined in
the previous section.

In order to determine an qLPV model, we first determine the matrices A m,Bm using
the three step procedure outlined in section 3.5.2. The first step of this procedure is to
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Figure 3.7 Plot of the relative prediction error criterion (3.78) as a function of the number of
component models M.

construct a linear model A0,B0. This model is the same model as the linear model we
have just estimated.

The second step in the procedure is to determine the component models A m,Bm

for m = 1, . . . ,M. In order to determine the component models, we first map the data
ZN to a long expansion f long

id (·) in matrices Al
m,Bl

m (see (3.59)). For this purpose
we linearize the function fred(·) for all data (xred(k),u(k)) ∈ ZN such that the long
expansion f long

id (·) can be constructed using proposition 3.5. It should be noted that in

constructing the expansion f long
id (·), no offset terms xl

o f f ,m are used. The offsets were
omitted from the expansion because no offset is present.

The long expansion f long
id (·) was used to derive a much shorter expansion f short

id (·).
The new matrices Am,Bm for m = 1, . . . ,M were computed using Procedure 3.6 as
described in section 3.5.2. The number of component models M of the shorter model
has been determined by examining the relative prediction error (3.78) of the shorter
expansion f short

id (·) as a function of M. A plot of the relative prediction error (3.78)
as a function of M is given in Figure 3.7. As can be seen in the figure, the relative
prediction error decreases almost exponentially for increasing values of M. For the
heated plate model we will use a value of M = 8. For M = 8 the relative prediction
error (3.78) for the simulated identification data Z N using the computed coefficients
βm(k) is 2.74 · 10−6 . To put this number is perspective, the linear model specified
using only A0,B0 identified using the same test data resulted in a relative prediction
error of 2.33 ·10−4, which is approximately a factor 85 times larger than for the qLPV
structure.

Once the matrices Am,Bm for m = 1, . . . ,M have been determined, we still need to
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Figure 3.8 Plot of values of β2(k) as computed using (3.86 ) versus the fourth input component
of u(k) (left side temperature).

construct scheduling functions φm(xred(k),u(k)) as described in section 3.5.3. To find
an appropriate model structure for the scheduling functions φ m(xred(k),u(k)), we use
plots of the computed coefficients βm as a function of states and inputs. An example
of such a plot can be found in Figure 3.8, in which the second scheduling function
β2(k) is plotted against the fourth component of the inputs u 4(k). Based on the shape
of the Figure 3.8, we can conclude that the coefficients β 2(k) seem to behave as a third
order polynomial function of u(k). Similar plots of coefficients β m(k) against rows of
xred(k) suggest that a similar relation exists between βm(k) and xred(k). This was of
course to be expected given that the nonlinearity of the original heated plate model
is caused by heat the conductivity function λ (T ) that is a third order polynomial.
As a result, the following structure for the scheduling functions φ m(xred(k),u(k)) was
chosen:

φm(xred(k),u(k),θm) = [1 [xred(k)]T1:8 u(k)T [xred(k)]3 T
1:4 [u(k)3]T ]θm, (3.101)

with θm ∈ R
21×1 the parameter vector of the scheduling function.

Since we have chosen a scheduling function that is linear in the parameter vectors
θm for m = 1, . . . ,M, the parameter vectors θm can be determined by solving a least
squares problem (see (3.92)).

Now that we have obtained an qLPV model its quality will be assessed using the
same 1000 point validation data that was used to test both the linear model and the
partitioning methods. The prediction error for the qLPV method on the validation
data is 4.8 ·10−4 which is approximately 10 times smaller than for the linear model.
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Table 3.2 Averaged prediction errors per grid cell and computation time of constructed ap-
proximate faster models of heated plate models. Averaged prediction errors per grid cell and
computation time were determined for a 1000 points validation data.

Model Err CPU time
Original reduced order model f red(·) 0 307 s.
Partitioning using LS (dim x[1] = 196) 2.74 ·10−3 52 s.
Partitioning using Sp. cov (dim x [1] = 196) 1.94 ·10−3 55 s.
Partitioning using Sp. + Temp. cov. (dim x [1] = 196) 0.17 ·10−3 55 s.
Identified Linear model 4.85 ·10−3 3 s.
Identified quasi-LPV model 0.48 ·10−3 36 s.

In this section we have used the same heated plate model and the same validation
model to test the performance of the qLPV identification method, as was used to test
the performance of the partitioning methods in section 3.4.2. As a result, we can
compare the results of both approaches. The result of both the partitioning methods
as well as the results of the qLPV identification method are summarized in Table 3.2.
For each approximation method, the table lists the average prediction error and the
CPU time required to perform 1000 model evaluations. For reference the CPU time
for the reduced order heated plate model is also given.

The listed models obtained using partitioning are all obtained using a state par-
titioning of the form (3.16) in which dim(x [1]) = 196. The CPU time required to
evaluate 1000 model evaluations is approximately 55 seconds. The accuracy of the
partitioning methods ranges from 2.74 ·10−3 for the least squares method (see (3.21)),
to 0.17 ·10−3 for the method that uses both spatial and temporal correlations.

The identified linear model (3.99) requires only 3 seconds to perform 1000 model
evaluations, but its prediction error is the largest. The identified qLPV model requires
36 seconds to perform 1000 model evaluations, but its accuracy is far better than the
linear model.

The heated plate model uses an explicit Euler solver to compute state updates (see
section 3.4.1). Even when such a simple solver is used to compute state updates, the
approximation models obtained using partitioning methods and qLPV modelling use
significantly less time per model evaluation. The reduction in computational complex-
ity of the reduced order methods leads to a reduction in CPU time by a factor of 5.6
for the partitioning methods and a factor of 8.5 for the qLPV method. Had a more
complex solver been used in the original model, the expected speedup factor using the
approximate models probably would have been higher.



3.7 Summary and conclusions 71

3.7 Summary and conclusions

Model reduction alone does not enable the use of large-scale first principles models
for online state estimation. Indeed, we showed that even though model reduction de-
creased the number of model evaluations required for state estimation, each model
evaluation of the reduced order model f red(·) still requires the evaluation of the origi-
nal first principles model f (·).

Consequently, reduction of the state dimension alone is thus not sufficient to be
able to use first principles for online state estimation. The CPU time required for a
model evaluation has also to be drastically decreased. In this section, we have pro-
posed two methodologies in order to obtain a model f f ast(·) that closely approximates
fred(·) while requiring much less CPU time per model evaluation. The first method
is a partitioning approach. Here, the faster model is generated by only computing a
state update for a part of the state. The remaining states are approximated using lin-
ear operations. The accuracy of the approximated states increases when spatial and
temporal covariance information is used.

The second approach obtains a function f f ast(·) using identification techniques.
In section 3.5 a new identification algorithm has been presented that can be used to
identify a qLPV model f f ast (·) from simulated data generated using the reduced order
model fred(·).

The use of both methods has been illustrated using a simulation example, see
sections 3.4.2 and 3.6. In the simulation examples faster models were computed for
a first principles model of a heated plate. Both partitioning and qLPV identification
resulted in models that accurately predicted the new states of the original reduced
order model fred(·) of the heated plate using only a fraction of the CPU time.





Chapter 4

Kalman filtering for poorly
observable systems without
noise information

4.1 Introduction

In the previous chapters it has already been discussed that both state dimension and
computational complexity can be obstacles that prevent the use of state estimation
techniques. In this chapter another obstacle preventing optimal filter design will be
discussed. Consider the case in which the process model is a state-space model of
reasonable dimension, such that both state dimension and computational complexity
do not pose problems for state estimation. For such models the states of the process
can be estimated using measurements related to the state. The estimated states are pro-
duced using a state filter such as the Kalman filter. The standard design methodology
for such a filter requires not only a full description of the relation between the states
and measurements, but also a full description of the noise affecting the states and the
measurements. Like in the previous chapters we assume that such a model relating the
measurements to the states has been obtained using first principles modelling. At this
point it is important to note that first principles models of physical plants are gener-
ally not fully controllable and observable, due to the limited amount of measurements
(i.e. the limited dimension of the measurement vector with respect to the dimension of
the state vector). Moreover, although the deterministic behavior can often be derived
using first principles modelling, this form of modelling only very rarely admits an ac-
curate description of the stochastic behavior. Based on these considerations, we will
address the problem of designing a reliable Kalman filter when no noise properties are
available and when some singular values of the observability matrix are small or even
zero. For simplicity, we will consider linear systems of the form

x(k+1) = Ax(k)+Bu(k)+w(k) (4.1)

y(k) = Cx(k)+ v(k), (4.2)
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with x(k) ∈ R
nx×1 the state of the system at time index k, u(k) ∈ R

nu×1 the known
input of the system, w(k) ∈ R

nx×1 the unknown process noise, y(k) ∈ R
ny×1 the mea-

surement vector and v(k) ∈ R
ny×1 the measurement noise. The noises w(k) and v(k)

are assumed to be Gaussian with:

E



w(k)
v(k)

�
= 0, (4.3)

E



w(k)
v(k)

�T �
w(l) v(l)

�
=



Q S
ST R

�
δk,l. (4.4)

Limiting ourselves to the class of linear models, the results of this chapter can only be
applied to processes whose behavior can be modelled linearly in the intended working
area. The advantage of limiting ourselves to linear processes is that we are able to
provide more detailed analysis, without having to resort to approximations.

For the considered linear systems the optimal estimator for the state vector x(k) is
the Kalman filter [3]. The Kalman filter is optimal is the sense that it minimizes the
MSE: 

k

E‖x(k)− x̂(k|k)‖2. (4.5)

The optimal predictor (in the MSE sense) can be written in the Kalman innovations
form:

x̂(k+1|k) = Ax̂(k|k−1)+Bu(k)+Ke(k) (4.6)

e(k) = y(k)−Cx̂(k|k−1), (4.7)

with K ∈ R
nx×ny the Kalman gain and e(k) ∈ R

ny×1 the so-called innovation process.
The filter estimates x̂(k|k) can be computed via:

x̂(k|k) = x̂(k|k−1)+A−1Ke(k). (4.8)

The optimal Kalman gain is generally computed as a function of (A,B,C) and (Q,R,S).
As already mentioned, we consider the case where the matrices A,B,C are available,
but matrices Q,R,S are not available.

If the covariance matrices Q,R,S are not known, an optimal Kalman filter of the
form (4.6)-(4.7) can no longer be computed. Instead, a sub-optimal filter could be con-
structed that has the same form as (4.6)-(4.7). The Kalman gain K in the suboptimal
filter is replaced by a manually tuned gain matrix L. The filter gain can be determined
using pole placement techniques, such as described in [59]. The resulting filters are
generally sub-optimal in the sense that there is no guarantee that the criterion (4.5) is
minimized.

If Q,R,S are not available, but data u(1),y(1), . . . ,u(N),y(N) are available, many
methods can be found in the literature to design a filter that is equivalent to the Kalman
filter as the number of data N tends to infinity. Indeed, a filter designed using one of
these data-based methods will minimize the MSE error of the estimated states (see
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(4.5)). In practice the available number of measurements N is finite. As a result the
filters designed using these data-based methods result in sub-optimal results.

The data based methods to compute a Kalman filter can be divided into two groups
of methodologies:

• Parametric methods. This group of methods parameterizes either Q(θ ),R(θ ),S(θ )
or K(θ ). The parameter vector θ is estimated using a series of data
u(1), . . . ,u(N),y(1), . . . ,y(N). Issues regarding the parametrization of either
Q(θ ),R(θ ),S(θ ) or K(θ ) are discussed below. Examples of different estima-
tors for θ are also given below. Using the estimated parameter vector θ̂ , the
Kalman filter is constructed using the usual relations.

• Non-parametric methods. This group of methods directly derives a Kalman
filter using test data u(1), . . . ,u(N),y(1), . . . ,y(N), without the need to parame-
terize Q,R,S or K.

The group of parametric methods can again be divided into to groups. The first
group parameterizes Q(θ ),R(θ ) and S(θ ), the second group parameterizes K(θ ). If
Q(θ ),R(θ ),S(θ ) are parameterized, the dimension of parameter vector θ can often
be very high. Full parametrization of Q,R,S requires 1

2nx(nx + 1) + 1
2ny(ny + 1) +

nxny parameters (discounting the symmetric ones). The number of parameters can be
reduced by for instance only parameterizing the diagonals of matrices, but this may
limit the accuracy of the resulting Kalman filter.

If K(θ ) is parameterized the number of parameters required for a full parametriza-
tion is nxny. Since the number of parameters to be estimated is smaller then when
Q(θ ),R(θ ),S(θ ) are parameterized, parameterizing K(θ ) is generally preferable.

Once a suitable parametrization for either K(θ ) or Q(θ ),R(θ ),S(θ ) has been cho-
sen, the vector θ can be estimated. Estimators for θ encountered in the literature can
be classified into four categories: Bayesian estimators, Maximum Likelihood (ML)
estimators, estimators based on Prediction Error Identification and estimators that use
correlation or covariance matching.

Using the collected data u(1) . . .u(N),y(1) . . .y(N), the Bayesian estimator for θ
is given by :

θ̂ = E(θ |u(1) . . .u(N),y(1) . . .u(N)), (4.9)

where the expected value is taken over θ , since in Bayesian estimation θ is modelled
as a stochastic variable. Computing the expected value in the equations above involves
numerical integration over a possibly large dimensional parameter space. As such,
Bayesian estimation is a computationally intensive estimation method. More details
about Bayesian estimation of covariance information can be found in [62].

The second class of estimators are the ML estimators. The ML estimator of θ is
given by:

θ̂ = argmax
θ

Pr(y1 . . .yn|θ ,u1 . . .uN), (4.10)
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with Pr(y|θ ,u) the conditional probability that y occurs given θ and u. Like the
Bayesian method of estimation, the ML estimator is also computationally intensive,
as it usually involves numerical nonlinear minimization. The use of the ML estimator
to construct a Kalman filter is described in more detail in [102].

The third group of estimators for θ use the Prediction Error Identification method
as described in [56]. The estimator θ̂ for this method is given by:

θ̂ = argmin
θ

N
k=1

‖ŷ(k,θ )− y(k)‖2, (4.11)

with ŷ(k,θ ) the best one step ahead prediction of y(k) given all information y(1) . . .
y(k−1),u(1) . . .u(k−1) as a function of θ . Like the ML estimation procedure, Pre-
diction Error Identification often requires nonlinear minimization. Thus the parameter
estimation procedure is computationally difficult. It can be shown that the Prediction
Error estimate is closely related to the ML estimator, see for instance [77].

The fourth and final class of estimators consists of covariance matching meth-
ods. In these methods, θ is solved by considering the autocovariance function of the
innovations process e(k) (see (4.7)). For an optimal filter it can be shown that this se-
quence should be a white noise [3]. This property is used in [66] and [18] to iteratively
construct estimates of the optimal choices for either Q,R,S or K.

All the parametric approaches described require that a nonlinear optimization
problem has to be solved in order to construct the Kalman filter. Even when the
dimension of the parameter vector θ is small, the criterion function in the optimiza-
tion problem can exhibit local minima, meaning that the problem can only be solved
if accurate starting values for θ are available.

In summary, there are two difficulties that prohibit the use of parametric methods
to construct a Kalman filter for practical data. The first reason is that finding a suit-
able parametrization for either Q(θ ),R(θ ),S(θ ) of K(θ ) is nontrivial. Secondly the
resulting optimization problem to estimate θ is generally nonlinear.

The second group of methodologies to construct a Kalman filter from practical
data are the nonparametric methods. An example of a nonparametric method is the
covariance based approach described in [67]. In the described method, the covariance
of the stochastic part of the signal y(k) is used to directly identify the Kalman gain
matrix K, without the need for K to be parameterized. Moreover, for the construction
of the Kalman gain K, only linear operations are necessary.

Given these attractive properties of the nonparametric approach presented in [67],
we will only consider this approach to construct a Kalman filter from practical data.

For both parametric and nonparametric approaches, (including the covariance based
method we are considering), it is assumed that the system described by (4.1)-(4.2) is
completely observable and also that the corresponding observability matrix has no
small singular values. This can be a problem, because for many physical systems, this
is not necessarily the case.

This chapter contains three main contributions:

• We will show that an ill conditioned observability matrix for the system (4.1)-
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(4.2) can lead to poor results of the Kalman Filter derived using the covariance-
based approach (even if the number of available test data is reasonably large).

• We will show that this problem can be solved by using the normal covariance
based approach for only a part of the state directions and derive a separate esti-
mator for the remaining state directions.

• We will show that even if a system is completely unobservable in certain direc-
tions of the state-space, it is still possible to construct a useful Kalman filter.

This chapter is organized as follows: section 4.2 starts with a summary of the
covariance based Kalman filter design method. Then, in the second part of section
4.2, we demonstrate how this covariance based Kalman filter design method can be
used to construct an optimal filter using known matrices A,B,C and a series of test
measurements. Section 4.3 then analyze the sensitivity of this method to estimation
errors and also shows how this sensitivity can be reduced. Section 4.4 presents a
simulation example, in which the results of the previous sections are applied. Section
4.5 provides a discussion of the properties of the results. The chapter ends with a
summary of the main results and some concluding remarks in section 4.6.

4.2 Covariance based design of a Kalman filter

4.2.1 Introduction

As mentioned in the introduction our methodology for designing a state filter is based
on a covariance based design procedure of the Kalman filter. In the first part of this
section a short overview of the covariance based design procedure for the Kalman
filter is given.

The second part of this section describes how this method can be used to obtain a
state filter using only knowledge of the matrices A,B,C, and some test data consisting
of a series of inputs u(k) and corresponding outputs y(k).

4.2.2 Summary of the covariance based Kalman filter design

As opposed to the standard method for the design of a Kalman filter which requires
knowledge of the matrices (Q,R,S), the covariance based method does not require this
information. Instead, the covariance of the measurement signal y k is used to construct
the Kalman filter. The resulting filter is equivalent to the filter designed using the
common design method.

The model (4.1)-(4.2) can be split into two parts, a purely deterministic part, and
a purely stochastic part. The deterministic part is given by:

xd(k+1) = Axd(k)+Bu(k) (4.12)

yd(k) = Cxd(k). (4.13)
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The stochastic part of the system is given by:

xs(k+1) = Axs(k)+wk (4.14)

ys(k) = Cxs(k)+ vk. (4.15)

The deterministic and stochastic systems are related to the complete system by:

x(k) = xd(k)+ xs(k) (4.16)

y(k) = yd(k)+ ys(k). (4.17)

If we assume that the matrix A is stable and the process is in steady-state, the covari-
ance function of the stochastic part of the measurements y s(k) can be written as:

Rys(i,k) = E[ys(k+ i)ys(k)T ] =

#$
%

CAi−1M(k) i > 0
CT Φ(k)C +Re(k) i = 0

M(k)T (AT )(−i−1)
C i < 0

(4.18)

In the equation above, M(k) is the cross-covariance between the stochastic part of the
state xs(k+1) and stochastic part of the output ys(k):

M(k) = E

�
xs(k+1)ys(k)T

�
, (4.19)

Re(k) is the covariance of the innovation sequence e(k) (see (4.7)):

Re(k) = E[e(k)e(k)T ] (4.20)

and Φ(k) is the covariance of the stochastic part of the state:

Φ(k) = E[xs(k)xs(k)T ]. (4.21)

Using the definitions in this section, the Kalman filter (for prediction) is given by
(4.6)-(4.7), with

K(k) = [M(k)−AΣ(k)CT ]Re(k)−1 with (4.22)

Re(k) = Rys(0,k)−CΣ(k)CT , (4.23)

Σ(k+1) = AΣ(k)AT +K(k)Re(k)K(k)T ,

Σ(0) = 0.

In these last equations, Σ(k) can be interpreted as the covariance of the estimated state
x̂s(k):

Σ(k) = E[x̂s(k)x̂s(k)T ]. (4.24)

As can be seen from (4.22) B plays no role when computing the Kalman gain K.
To simplify the notation in the remainder of this report without loss of generality it is
assumed that B = 0.
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Since we assumed that the stochastic process is in steady state, the matrices M(k),
Σ(k), Φ(k) and Re(k) will quickly converge to constant values.

Summarizing, if the matrix M(k) (see (4.19)) and the covariance function R ys(k)
are known, it is possible to compute the Kalman gain K (see (4.6)) even when the
covariance matrices Q,R,S are not known. In practice, situations in which Q,R,S
are unknown, but where M and Rys(k) are known will never occur. Fortunately, if data
u(0),y(0),u(1),y(1), . . . generated with the original system is available, M and Rys can
be estimated. Using the estimates for M and Rys we can then use (4.22) to construct a
state filter.

4.2.3 Estimation of M, Rys(0)

As already mentioned in the previous section, we will need to estimate the unknown
quantities M and Rys(k), in order to be able to construct a state filter using (4.22). In
this section it is demonstrated how these can be estimated, using N points of test-data
generated by (4.1)-(4.2). Note that (once the process is in steady state) these quantities
M and Rys(k) are constants and both are independent on the input signal u(k) that was
used to generate y(k).

We start by showing how M can be estimated. An estimator for M is easily derived
by realizing that the following relation holds:�

��
Rys(1)

...
Rys(N−1)

�
�� = OM with (4.25)

O =
�
CT (CA)T . . . (CAL−1)T

�T
, (4.26)

with L a constant integer for which holds that L ≥ nx/ny. Denote the left inverse of
O ∈ R

Lny×nx as O†, i.e.

O† = (OTO)−1OT . (4.27)

Using this left inverse, M can be obtained via:

M = O†

�
��

Rys(1)
...

Rys(L)

�
�� . (4.28)

The covariance function Rys(k) is unknown, but as will be shown in the sequel, it can
be estimated using the available test data.

In order to estimate the covariance function Rys(k) we require ys(k), the stochastic
part of the measurements y(k). This signal can be recovered from measurements y(k)
using:

ys(k) = y(k)− yd(k) (4.29)

= y(k)−CAkxd(0)−
k−1
i=0

CAk−1−iBu(i).
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In the equation above the initial state of the deterministic part, x d(0) is unknown.
However, if A is stable, limk→∞ Akxd(0) = 0, so for large k we can write:

ys(k) ≈ ỹs(k) � y(k)−
k−1
i=0

CAk−1−iBu(i) ∀ k >> 1. (4.30)

Using the signal ỹs(k), the covariance function Rys(i) can be estimated using different
methods:

• The simplest method to estimate the covariance function Rys(k) is using a lagged
product estimator:

R̂ys(i) =
1
N

N−i
k=0

ys(k+ i)ys(k)T . (4.31)

• The covariance function Rys(k) can also be estimated using a model based ap-
proach. In the model based approach the stochastic signal y s(k) is assumed to
be generated using:

ζ (k+1) = Asζ (k)+Ksε(k) (4.32)

ys(k) = Csζ (k)+ ε(k), (4.33)

with ε(k) a zero mean white noise process with covariance Rs. The matrices
As,Ks,Cs,Rs can be estimated using subspace algorithms such as CCA [52],
N4SID [93] or MOESP [96]. Denoting the estimated matrices as Âs, K̂s,Ĉs, and
R̂s, the estimate for Rys(k) is:

R̂ys(k) =
&

ĈsPζĈT
s + R̂s for k = 0

ĈsÂk
sPζĈT

s for k > 0,
(4.34)

with Pζ the solution of the Lyapunov equation:

Pζ = ÂsPζ ÂT
s + K̂sR̂sK̂

T
s . (4.35)

• If the signal ys(k) is scalar, we can using ARMA time-series modelling to esti-
mate Rys(k). In this approach the signal ys(k) is modelled as:

ys(k)+a1ys(k−1)+ . . .+apys(k− p) =
ε(k)+b1ε(k−1)+ . . .+bqε(k−q), (4.36)

with ε(k) a zero mean white noise process. Using the data ys(k) the parame-
ters a1, . . . ,ap,b1, . . . ,bq can be estimated, using time series software (see for
instance [17]). The estimated parameters can then be used to construct the es-
timate for the covariance function ys(k) using the Levinson-Durbin relations
[87].
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Using the estimated covariance function R̂ys(i), a natural estimator for M is:

M̂ = O†

�
��

R̂ys(1)
...

R̂ys(L)

�
�� . (4.37)

Using the estimate for M and the estimate R̂ys(0) of Rys(0), an approximateKalman
filter can be constructed using (4.22), after substituting M̂ for M and R̂ys(0) for Rys(0).

4.3 Improved estimation

4.3.1 Introduction

If the technique described in the previous section is directly used to obtain an approx-
imate Kalman filter, the accuracy of the estimates of the obtained Kalman filter can
vary from being very accurate to being very poor. It can be shown that results are poor
when the matrix O satisfies the following assumption:

Assumption 4.1 Denote the decreasing singular values of O as σ1 ≥ . . .≥ σl ≥ . . .≥
σnx . It will be assumed that the matrix C and corresponding measurements y(k) are
scaled such that

σ1 = 1 (4.38)

and

σi << 1 ∀ i > l. (4.39)

We will start by explaining why the estimated states can be very poor under this
assumption. The poor quality of estimated states can be easily explained if we consider
the estimation error for M̂. Denote the SVD of O as:

O = U

�
����

σ1
. . .

σnx

0

�
����VT (4.40)

in which U ∈ R
(N−1)ny×(N−1)ny and V ∈ R

nx×nx are unitary matrices. Using this nota-
tion, the estimation error for M̂ can be written as:

M̂−M = [V1:l Vl+1:nx ]

�
��

σ−1
1

. . .
σ−1

nx

0

�
��
�
� UT

1:l
UT

l+1:nx

UT
nx+1:(N−1)ny

�
�∆R, (4.41)
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with

∆R =

�
��

R̂ys(1)−Rys(1)
...

R̂ys(N−1)−Rys(N−1)

�
�� (4.42)

and Vi: j and Ui: j matrices consisting of the columns i through j of V and U , respec-
tively. From (4.41) we see that an error ∆R in the direction of Ui corresponds to an
error M̂−M in the direction Vi after multiplication with σ−1

i . Due to Assumption 4.1
small errors ∆R in the directions of Ul+1:nx induce large errors M̂−M in the directions
of Vl+1:nx .

For some estimators of the covariance function Rys(k) an expression for both the
mean and covariance of ∆R is available. If the bias and variance of ∆R are given as:

E{∆R} = ∆R and E{(∆R −∆R)(∆R −∆R)T} = R∆R , (4.43)

then it holds that

E(M̂−M)(M̂−M)T = Y∆R∆T
RYT +YR∆RY

T , (4.44)

in which

Y = [V1:l Vl+1:nx]

�
��

σ−1
1

. . .
σ−1

nx

0

�
��
�
� UT

1:l
UT

l+1:nx

UT
nx+1:(N−1)ny

�
� . (4.45)

If a filter is designed using M̂ instead of M, the estimation error M̂−M will result
in an increase in the MSE of the estimated states x̂(k|k). Unfortunately an explicit
equation describing the increase of the MSE for x̂(k|k) as a result of the estimation
error M̂−M is not known, but experience shows that when M̂−M is large, the MSE
for a filter designed using M̂ instead of M is much higher than the MSE of the Kalman
filter estimates. Under assumption 4.1 small errors ∆R in the directions of Ul+1:nx

induce large errors M̂ −M in the directions of Vl+1:nx , thus large estimations errors
M̂ −M are likely to occur and the state estimates using an unmodified covariance
methods are often poor.

In the remainder of this section we will show how a good estimate of the state can
be obtained under Assumption 4.1. When deriving this estimator, it is convenient to
first apply the following similarity transform:

x̃(k) =V T x(k) =
�

VT
1:l

V T
l+1:nx

�
x(k) =



x̃1(k)
x̃2(k)

�
. (4.46)

The state x̃1(k) is thus the component of the original state in the directions of V1:l,
and x̃2(k) corresponds to the component of x(k) in the directions Vl+1:n. After having
derived an estimate ˆ̃x(k) the corresponding estimate x̂(k) can be simply computed via
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x̂(k) = V ˆ̃x(k). Due to the similarity transform, the various state related matrices also
need to be transformed:

Ã = VT AV =
�

Ã11 Ã12

Ã21 Ã22

�
(4.47)

C̃ = CV =
�
C̃1 C̃2

�
(4.48)

M̃ = VT M =



M̃1

M̃2

�
(4.49)

Σ̃(k) = VT Σ(k)V =



Σ̃11(k) Σ̃12(k)
Σ̃21(k) Σ̃22(k)

�
(4.50)

K̃(k) = VT K(k). (4.51)

Note that after the similarity transform, M̃1 corresponds to the directions in which
M can be accurately estimated using (4.37) and M̃2 corresponds to the directions in
which M is difficult to estimate.

The estimator for x̃(k) will be derived in two steps, first we will construct an esti-
mator for x̃1(k) then an estimator for x̃2(k) will be discussed.

4.3.2 Estimator for x̃1(k)

Our estimator for the state component x̃1(k) is based on the following proposition:

Proposition 4.2 Define M̃l as:

M̃l =



M̃1

0

�
. (4.52)

Suppose that σi = 0 for i > l and assume we construct a Kalman filter using (4.22)
using M̃l instead of M̃. Denote the vectors and matrices Σ̃(k), R̃e(k), ˆ̃x(k) that are
computed using M̃l as Σ̃l(k), R̃e,l(k), ˆ̃xl(k). Then it holds that:

• Re,l(k) = Re(k)

• Σ̃11,l(k) = Σ̃11(k)

• ˆ̃x1,l(k) = ˆ̃x1(k).

Proof. The proof can be found in section 4.A

This proposition implies that the estimation result ˆ̃x1(k) does not change if, instead
of using the exact Kalman filter, we use a Kalman filter obtained by replacing M̃ by
M̃l in (4.22).

Combining the result with the fact that we can accurately estimate ˆ̃M1 with ˆ̃M1 =
VT

1:lM̂, a natural estimator for x̃1(k) is thus the Kalman Filter computed with (4.22)

where M̃ is replaced by [ ˆ̃M1 0]T .
Note that even though Proposition 4.2 holds for σ i = 0 ∀ i > l, we assume that for

a Kalman filter constructed using [ ˆ̃M1 0]T under Assumption 4.1 it holds that:
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• Re,l(k) ≈ Re(k)

• Σ̃11,l(k) ≈ Σ̃11(k)

• ˆ̃x1,l(k) ≈ ˆ̃x1(k).

4.3.3 Estimator for x̃2(k)

Using Proposition 4.2 we can construct an estimator for x̃ 1(k). In this section we will
construct an estimator for the remaining states x̃2(k). The optimal estimate for x̃2(k)
corresponding to the optimal Kalman filter is:

ˆ̃x2(k+1|k) = Ã21

'
ˆ̃x1(k|k−1)+E[(x̃1(k)− ˆ̃x1(k|k−1))|e(k)]

(
+ Ã22

'
ˆ̃x2(k)+E[(x̃2(k)− ˆ̃x2(k|k−1))|e(k)]

(
. (4.53)

Both conditional expectations can be expressed as functions of M̃, Σ̃(k), C̃, R̃e(k) and
e(k) using the following proposition:

Proposition 4.3 Under the assumption that σ i = 0 for i > l, the expected value terms
E[(x̃1(k)− ˆ̃x1(k|k−1))|e(k)] and E[(x̃2(k)− ˆ̃x2(k|k−1))|e(k)] in (4.53) can be written
as:

Ã21E[(x̃1(k)− ˆ̃x1(k|k−1))|e(k)] = Ã21(Ã−1
11 M̃1− Σ̃11(k))C̃T

1 R−1
e (k)e(k) (4.54)

and

Ã22E[(x̃2(k)− ˆ̃x2(k|k−1))|e(k)] = (M̃2 − Ã21Ã
−1
11 M̃1 − Ã22Σ̃21(k)C̃T

1 )R−1
e (k)e(k).

(4.55)

Proof. The proof of the proposition is contained in section 4.B

In this proposition we see that the conditional expectation for the error in ˆ̃x1(k)
can be computed, since the expression contains only elements that are either known,
or can be accurately estimated.

Computing the expectation E[(x̃2(k)− ˆ̃x2(k))|e(k)] requires an accurate estimate

of ˆ̃M2, which is unavailable. This means we cannot reliably compute the conditional
expectation for the error in x̃2(k). Therefore we choose not to use this conditional
expectation.

Even though we cannot reliably compute E[(x̃ 2(k)− ˆ̃x2(k))|e(k)], we can show
that

Ee(k)

�
E[(x̃2(k)− ˆ̃x2(k))|e(k)]

�
= 0. (4.56)

This means that the a-priori (i.e. before e(k) was known) expectation of the last term
in (4.53) is zero. This result is easily obtained using (4.55). As a result an a-priori
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unbiased prediction ˆ̃x2(k+1|k) can be obtained using:

ˆ̃x2(k+1|k) = Ã21

'
ˆ̃x1(k|k−1)+E[(x̃1(k)− ˆ̃x1(k|k−1))|e(k)]

(
+ Ã22 ˆ̃x2(k|k−1).

(4.57)
Note that even though the new estimator for x̃2(k + 1) is unbiased, it is not optimal,
because we cannot reliably use the correlation that exists between e(k) and x̃ 2(k)−
ˆ̃x2(k|k−1). Still because (4.57) can be reliably computed, whereas (4.53) cannot, the
estimate ˆ̃x2(k + 1|k) obtained using (4.57) is often better (in terms of its MSE) than
the estimate obtained using (4.53).

Combining (4.54) and (4.57), the complete estimator for x̃ 2(k +1) is obtained by

replacing M̃1 with the estimate ˆ̃M1:

ˆ̃x2(k+1|k) = Ã21 ˆ̃x1(k|k−1)+ Ã22 ˆ̃x2(k|k−1)

+ Ã21(Ã−1
11

ˆ̃M1 − Σ̃11,l(k))C̃T
1 R−1

e,l (k)e(k). (4.58)

4.3.4 Summary

A data based Kalman filter can be estimated using the procedure described in section
4.2.3. In practice, the estimation results of Kalman filter constructed in this manner
are often unsatisfactory. In section 4.3.1 it was argued that the poor performance of a
data based Kalman filter may be caused by large estimation errors for M, especially
when the system is poorly observable (see assumption 4.1).

In sections 4.3.2 and 4.3.3 an alternative method was derived to construct a data
based Kalman filter. The methodology was designed to result in accurate data based
Kalman filters, even if the system model is poorly observable.

The new filter is constructed by first applying a similarity transform x̃(k)=V T x(k).
Then the elements corresponding to the first l columns of V (= x̃ 1(k)) are estimated
using an approximate Kalman filter estimate that is constructed by inserting [ M̃T

1 0]T

for M in (4.22). Using the results of this filter, x̃2(k) can be estimated using (4.58).

4.4 Simulation example

In this section the method for constructing a Kalman filter as outlined in the previous
sections will be demonstrated using a simulation example. For the example, we will
again use the heated plate model introduced in section 3.4.1. To modify the heated
plate model such that the model structure complies with the structure of (4.1)-(4.2)
the following steps are taken:

1. Instead of using the temperature dependent heat transfer specified in (3.48), we
will use a constant heat conductivity coefficient:

λ = 80. (4.59)
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Figure 4.1 Example of the temperature distribution of the heated plate as computed using
heated plate model. The numbers in the figure correspond to the locations where the temperature
of the plate is measured.

It can be shown that using a constant heat conductivity, the model for the heated
plate becomes a linear state equation:

x(k+1) = Ax(k)+Bu(k). (4.60)

2. A zero mean Gaussian process noise term w(k) is added to the model as a pro-
cess noise. The covariance matrix Q of the process noise w(k) is chosen as a
diagonal matrix. Each element on the diagonal of Q is chosen randomly be-
tween 0 and 5.

3. A measurement equation of the form (4.2) is added. The measurements y(k) are
chosen to correspond to the measurement locations indicated in Figure (4.1).
The measurement error v(k) is chosen to be a zero mean Gaussian white noise,
with covariance matrix R = diag(0.1 0.1 0.1). The cross covariance S between
w(k) and v(k) is chosen S=0.

4. To simplify the computations involved in constructing a data based Kalman
filter, the model order was reduced to from 1024 to 12, using the POD technique
described in section 2.4.2.

After these modifications the heated plate model is a linear model of the form
(4.1)-(4.2), with all matrices A,B,C,Q,R,S known. The singular values of the observ-
ability matrix O for this system are presented in Table 4.1. As can be seen the singular
values are quickly decreasing. Thus the system can be said to be poorly observable.
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Table 4.1 Singular values of the observability matrix of the linear heated plate model

i σi i σi

1 0.35 7 0.0032
2 0.26 8 0.0016
3 0.10 9 4.6 ·10−4

4 0.045 10 4.6 ·10−5

5 0.028 11 2.1 ·10−5

6 0.0056 12 2.6 ·10−7

The goal of the simulation example is to test, assuming that the matrices A, B, C,
are known, and the set of test measurements y is available, if it is possible to construct
a Kalman filter using the procedure outlined in the previous sections. The accuracy
of the filter designed using this procedure will be compared with the accuracy of the
optimal filter, that can be constructed since in the simulations the true values of Q, R
and S are also available.

The first step in constructing a data based Kalman filter is to estimate the auto-
covariance function of the stochastic part of the measurements. For this purpose,
1500 measurements using the simulation model were generated. After subtracting the
deterministic part of the system using (4.30), the computed sequence y s was used to
estimate the autocovariance function R̂ys(k) of the stochastic part of measurements.
The covariance function was determined by estimating a state-space model of the
measurements using the N4SID subspace algorithm [93], using the subspace based
technique described earlier in section 4.2.3.

After estimating the auto-covariance function R̂ys(k), the estimated matrix M̂ is
constructed using (4.37). Finally the data based Kalman filter is designed by substi-
tuting the estimated values R̂ys(0) and M̂ for Rys(0) and M in (4.22) as was described
in section 4.2.

In order to evaluate the performance of the data based Kalman filter design method,
the accuracy of the resulting filters is compared with the optimal Kalman filter, the fil-
ter can be derived if Q,R,S are known. The comparison is conducted by using the true
system to generate an additional series of 1000 data points. The error measure that is
used to compare the performance is the averaged squared error of the predicted state,
which will be denoted by E :

E =
1
N

N−1
k=0

‖x(k)− x̂(k|k−1)‖2 . (4.61)

The averaged errors E for the optimal and approximate Kalman filter can be found in
Table 4.2.

The resulting averaged squared prediction error using the unmodified covariance
technique as described in section 4.2.3 is presented in Table 4.2. The filter designed
using the unmodified covariance technique is unstable, and as a result the average
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Table 4.2 Mean squared one-step-ahead prediction errors E of both the optimal Kalman filter
and approximations obtained using methods outlined in sections 2 and 3.

Filter E

Optimal filter 368
Direct approx. filter (sect. 2) 2.5 ·1026

Improved filter l = 1 (sect. 3) 500
Improved filter l = 2 (sect. 3) 447
Improved filter l = 3 (sect. 3) 399
Improved filter l = 4 (sect. 3) 402
Improved filter l = 5 (sect. 3) 425
Improved filter l = 6 (sect. 3) 611
Improved filter l = 7 (sect. 3) 2.7 ·104

squared prediction error of the filter is very large. This may be explained by the theory
of section 4.3 if O has small singular values. The poor results of the approximate
Kalman filter are likely caused by the smallest values, see (4.41).

Apart from the direct method of section 4.2.3, the improved filter of section 4.3
are also tested. In order to apply the results of section 4.3, we first need to apply the
similarity transform x̃(k) = V T x(k) and choose the number of elements in x̃1(k) and
x̃2(k). The number of elements in x̃1(k) is denoted by l. Normally a single partition
would be chosen using the computed singular values but in this example we have tried
all options for l = 1, . . . ,7. The results using the improved estimator are also presented
in Table 4.2.

Results in Table 4.2 show that using l = 1 the resulting Kalman filter produces
much better estimates than the unmodified covariance method. Results improve as l
is increased up to 3. For these values of l the matrix M̂ can be estimated accurately
enough, such that including these modes in the approximate Kalman filter improves
the accuracy of the resulting filter. For l = 3 the quality of the data based Kalman
filter is at its best. For values of l > 3, the quality of the resulting approximate filter
deteriorates. For l > 3 we can conclude that it is no longer beneficial to include extra
modes in M̃l , because ˆ̃Ml is no longer accurate enough.

4.5 Discussion

In this chapter we have considered covariance method for designing a Kalman filter.
As was shown in the simulation example in section 4.4, using the unmodified co-

variance method can result in a filter that produces poor state estimates. In section
4.3.1 we have shown that the poor accuracy of filter derived using the unmodified
method is likely to occur if the observability matrix of the system is poorly condi-
tioned. The poor condition number of the observability matrix results in inaccurate
estimate M̂. As a result estimates of the data based filter constructed using the esti-
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mated M̂ are also poor.
It should be noted however, that when using the covariance method, the error in

the estimate for M is not the only reason that a resulting state filter may be poor in
practice. As can be seen, from equation (4.22), the estimation error in R̂ys(0) can also
cause that the resulting state filter is not optimal.

From equation (4.23) we can conclude that if the R̂ys(0) is estimated too low, the
covariance matrix Re(k) in (4.23) can become negative, even though this auto covari-
ance matrix should always be semi-positive definite. In practice we see that data based
Kalman filters are generally unstable if Re(k) > 0∀k does not hold. Underestimating
Rys(0) can thus have severe consequences.

On the other hand, if the estimate R̂ys(0) > Rys(0), than we have that R̂e(k) >
Re(k). If a R̂e(k) > Re(k) is used to construct a data based Kalman filter, the Kalman
gain of the resulting data based filter is too low (see 4.22). While a too low filter gain
reduces the quality of the state estimates, this will not cause an unstable filter. It thus
appears that the consequences of underestimating Rys(0) are far more severe than the
consequences of overestimating Rys(0).

Therefore, since the consequences of underestimating Rys(0) are less severe than
the consequences of underestimating Rys(0), it is preferable to use a biased estimator
that overestimates Rys(0) to construct the approximate state filter.

If M and Rys(0) are perfectly estimated, and σ i = 0 for all i > l (as is assumed
in Propositions 4.2 and 4.3) then the reduced order filter is stable. In practice, the
singular values σl +1, . . . ,σnx are not exactly zero. While the consequences of σ i <<
1 instead of σi = 0 are difficult to analyze, experiments show that this can sometimes
cause the approximate filter to become unstable. This is especially true if the order of
the system is relatively large. The same experiments show that using (1− ε)A with
ε > 0 instead of A itself to construct the approximate Kalman filter again stabilizes the
approximate Kalman filter. While this method to stabilize the approximate Kalman
filter has worked in simulation trails, a better analysis for the case σ i << 1 is required
to derive structured methodology to stabilize experimentally obtained state filters.

4.6 Summary and conclusions

Classical state estimation has the objective to minimize the mean square error (MSE)
between the estimated state and the actual state vector. In order to reach this objective,
knowledge of the covariances of both the process noise and measurement disturbances
is required. In most first principles models this knowledge is not available.

For linear systems, the problem of unknown covariances for the process noise and
measurement disturbances can be tackled via multiple methods. A common point in
all these methods is that they use input and output data collected from the physical
system to determine the missing information. In this chapter we considered the use of
the so-called covariance method. This covariance method has the advantage that the
state filter can be derived using only linear operations.

The covariancemethod has been analyzed in section 4.3. In this section we showed
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that the method can lead to poor state estimates when the observability matrix of the
system is poorly conditioned. Even very small estimation errors for the disturbance
properties can indeed result in major estimation errors if the observability matrix is
poorly conditioned.

To solve this problem, we proposed a modified covariance procedur. In this mod-
ified procedure the state is estimated into two stages. In the first stage (see section
4.3.2) a state filter that only estimates the components of the vector that correspond
to the easily observable directions is designed. Then a separate state estimator for the
states that are poorly observable is derived.

In section 4.4 the effectiveness of the modified method was demonstrated in a sim-
ulation example. For this example, using the unmodified covariance method resulted
in a unstable state filter. In contrast, using the modified covariance method a filter can
be obtained that has nearly the same MSE as the optimal Kalman filter that would
be derived if the covarainces for the process noise and measurement disturbances had
been available.

Unfortunately, there appears to be no easy generalization of the modified covari-
ance method such that it can also be used for nonlinear process models.
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4.A Proof of proposition 4.2

4.A.1 Introduction

Although the proof of proposition 4.2 is quite straightforward, it is tedious and lengthy. For
readability purposes it was chosen to split up this section into two subsections. In the first
subsection some supporting lemmas are presented. These lemmas will be used in the main
proof which is presented in the second subsection.

4.A.2 Supporting lemmas

Lemma 4.4 Consider the observability matrix O ∈ R
Nny×1:

O =

�
���

C̃
C̃Ã
...

C̃ÃN−1

�
��� (4.A.1)

with N ≥ nx and Ã ∈ R
nx×nx and C̃ ∈ R

ny×nx . Furthermore define sets of vectors W1 and W2 as:

W1 �
	

w1 : w1 =



u1
0

�
,u1 ∈ R

l\{0}
�

(4.A.2)

W2 �
	

w2 : w2 =



0
u2

�
,u2 ∈ R

nx−l
�

. (4.A.3)

If for all possible w1 ∈W1 and w2 ∈W2 it holds that

Ow1 �= 0 (4.A.4)

Ow2 = 0, (4.A.5)

then it holds that:

Ãw2 ∈W2. (4.A.6)

Proof Suppose that there would exist w2 ∈W2 such that:

Ãw2 /∈W2. (4.A.7)

Then it must hold that

Ãw2 = r1 + r2, (4.A.8)

with r1 ∈W1 and r2 ∈W2. This implies that

OÃw2 = Or1 +Or2 �= 0, (4.A.9)

because Or1 �= 0 (see (4.A.4)) and Or2 = 0 (see (4.A.5)). Since OÃw2 �= 0 there must exist a
value of p ∈ {1,2, . . .} such that C̃Ãpw2 �== 0. Using the definition of (4.A.1) this means that:

Ow2 �= 0, (4.A.10)

which contradicts (4.A.5).
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Lemma 4.5 Consider the transformed system matrix C̃ as defined in (4.48). If σi = 0 for i > l,
then C̃ has the form C̃ = [CVT

1:l 0].

Proof The results is easy to see by realizing that the columns of Vl+1:n all correspond to non-
observable directions, which by definition implies that:

OVl+1:n = 0. (4.A.11)

Given the first block row of O in (4.26), we thus also have that:

CVl+1:n = 0. (4.A.12)

The transformed matrix C̃ is thus:

C̃ = CV (4.A.13)

= [CV1:l CVl+1:n] (4.A.14)

= [C̃1 0]. (4.A.15)

Lemma 4.6 Let the SVD of O as defined in (4.26) is given by (4.40) and let Π be defined as:

Π =



Il 0
0 0

�
, (4.A.16)

with Il the l× l identity matrix. If σi = 0 for i > l then

a.

ΠÃΠ = ΠÃ. (4.A.17)

b.

ΠC̃T = C̃T (4.A.18)

Proof

a. Because Ã12 = 0, it is easily shown that:

ΠÃ =



Ã11 0
0 0

�
(4.A.19)

ΠÃΠ =



Ã11 0
0 0

�
, (4.A.20)

and thus ΠÃ = ΠÃΠ.

b. Result follows immediately from Lemma 4.5 and definition of Π.

Corollary 4.7 As a result of Lemma 4.6 it can be shown that for any matrix W of appropriate
dimension it holds that:
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a.

ΠÃWC̃T = ΠÃΠWΠC̃T (4.A.21)

b.

ΠÃWÃT Π = ΠÃΠW ΠÃT Π. (4.A.22)

Proof Both results are easily proven by applying Lemma 4.6 on both sides of W .

4.A.3 Main proof

The main proof of proposition 4.2 is split up into 2 parts. In the first part it will be proved that
Σ̃11,l(k) = Σ̃11(k) and Re,l(k) = Re(k). Afterwards it will be shown that ˆ̃x1,l(k) = ˆ̃x1(k).

The proof that Σ̃11,l(k) = Σ̃11(k) and Re,l(k) = Re(k) can be constructed via induction. First
we verify that for k = 0 it holds that Σ̃11,l(0) = Σ̃11(0) and Re,l(0) = Re(0). This is easy to
verify, since at k = 0 the Kalman filter is initialized using Σ̃(0) = 0 and Re(0) = Rys(0).

To prove that Σ̃11,l(k) = Σ̃11(k) and Re,l(k) = Re(k) for k > 0 the following three implica-
tions need to be proved:

ΠΣ̃l(k)Π = ΠΣ̃(k)Π ⇒ Re,l(k) = Re(k) (4.A.23)

ΠΣ̃l(k)Π = ΠΣ̃(k)Π
Re,l(k) = Re(k)

�
⇒ ΠK̃l(k) = ΠK̃(k) (4.A.24)

ΠΣ̃l(k)Π = ΠΣ̃(k)Π
Re,l(k) = Re(k)

ΠK̃l(k) = ΠK̃(k)

)
⇒ ΠΣ̃l(k+1)Π = ΠΣ̃(k+1)Π, (4.A.25)

with Π defined as in (4.A.16).
Using Lemma 4.5 it can be shown that:

C̃Π = C̃ (4.A.26)

C̃(I−Π) = 0. (4.A.27)

These last two equations together with (4.23) can be used to prove (4.A.23):

Re(k) = Rys(0)−C̃Σ̃(k)C̃T (4.A.28)

= Rys(0)−C̃[Π+(I−Π)]Σ̃(k)[Π+(I−Π)]C̃T

= Rys(0)−C̃ΠΣ̃(k)ΠC̃T (4.A.29)

= Rys(0)−C̃ΠΣ̃l(k)ΠC̃T (4.A.30)

= Rys(0)−C̃Σ̃l(k)C̃T (4.A.31)

= Re,l(k). (4.A.32)

To prove the second induction equation (4.A.24), we start by expanding the expression of
ΠK̃(k) using (4.22)):

ΠK̃(k) = [ΠM̃−ΠÃΣ̃(k)C̃T ]R−1
e (k) (4.A.33)
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Using Corollary 4.7 twice we have that:

ΠÃΣ̃(k)C̃T = ΠÃΠΣ̃(k)ΠC̃T (4.A.34)

= ΠÃΠΣ̃l(k)ΠC̃T (4.A.35)

= ΠÃΣ̃l(k)C̃T , (4.A.36)

since we assume that ΠΣ̃l(k)Π = ΠΣ̃Π. It was also assumed that Re(k) = Re,l(k) and from the
definition of Ml in (4.52) we have that ΠM̃ = ΠM̃l = M̃l . Using these relations, (4.A.33) can be
rewritten as:

ΠK̃(k) = [ΠM̃−ΠÃΣ̃(k)C̃T ]R−1
e (k) (4.A.37)

= Π[M̃l − ÃΣ̃l(k)C̃T ]R−1
e,l (k) (4.A.38)

= ΠK̃l(k). (4.A.39)

The third and final induction relation can be proved by using Corollary 4.7. We will start
with the normal recursive equation (4.23) for ΠΣ̃(k)Π:

ΠΣ̃(k+1)Π = ΠÃΣ̃(k)ÃT Π+ΠK̃Re(k)K̃(k)T Π. (4.A.40)

Using Lemma 4.7 twice, the first term on the right hand side satisfies:

ΠÃΣ̃(k)ÃT Π = ΠÃΠΣ̃(k)ΠÃT Π (4.A.41)

= ΠÃΠΣ̃l(k)ΠÃT Π (4.A.42)

= ΠÃΣ̃l(k)ÃT Π. (4.A.43)

Using the assumptions that Re(k) = Re,l(k) and ΠK̃(k) = ΠK̃l(k) the second term on the right-
hand side of (4.A.40) satisfies:

ΠK̃(k)Re(k)K̃(k)T Π = ΠK̃l(k)Re,l K̃
T
l (k)Π. (4.A.44)

Substituting (4.A.43) and (4.A.44) in (4.A.40) results in:

ΠΣ̃(k+1)Π = ΠÃΣ̃l(k)ÃT Π+ΠK̃l (k)Re,l(k)K̃l(k)T Π
= ΠΣ̃l(k+1)Π. (4.A.45)

In the second part of this proof it still needs to be shown that ˆ̃x1,l(k) = ˆ̃x1(k). Again, the
easiest method to prove this is via induction. The initial estimate is independent of the choice
of M so for k = 0 we have that

ˆ̃x1,l(0) = ˆ̃x1(0). (4.A.46)

Using Lemma 4.4 and 4.5 new estimates for of ˆ̃x(k+1) are constructed using:

ˆ̃x1(k+1) = Ã11 ˆ̃x1(k)+ K̃1(k)[y(k)−C̃1 ˆ̃x1(k)] (4.A.47)

with K̃1(k) the first l rows of K̃(k) and C̃1 the first l columns of C̃. The new estimates for ˆ̃x1,l(k)
are computed via:

ˆ̃x1,l(k+1) = Ã11 ˆ̃x1,l(k)+ K̃1,l (k)[y(k)−C̃1 ˆ̃x1,l(k)]. (4.A.48)

In (4.A.39) it was already proven that K̃1,l(k) = K̃1(k) for all k. The right hand sides of (4.A.47)
and (4.A.48) are equal, and thus we can conclude that ˆ̃x1,l(k) = ˆ̃x1(k) for all k.
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4.B Proof of proposition 4.3

Using the assumption that e(k) is zero mean and Gaussian, we use the BLUE to show that (see
for instance [3])

E
 
(x̃(k)− ˆ̃x(k)|e(k))! = R(x̃(k)− ˆ̃x(k))e(k)R

−1
e (k)e(k) (4.B.49)

with

R(x̃(k)− ˆ̃x(k))e(k) = E(x̃(k)− ˆ̃x(k))e(k)T . (4.B.50)

= E(x̃(k)− ˆ̃x(k))(x̃(k)− ˆ̃x(k))T C̃T . (4.B.51)

= P̃(k)C̃T . (4.B.52)

In the step from (4.B.50) to (4.B.51) we use (4.7) and in the step from (4.B.51) to (4.B.52) P̃(k)
is defined as:

P̃(k) = E(x̃(k)− ˆ̃x(k))(x̃(k)− ˆ̃x(k))T . (4.B.53)

Since the estimation error x̃(k)− ˆ̃x(k) is uncorrelated to ˆ̃x(k) we can show that

Φ̃(k) = E{x̃(k)x̃(k)T } (4.B.54)

= E{[ ˆ̃x(k)− ( ˆ̃x(k)− x̃(k))][ ˆ̃x(k)− ( ˆ̃x(k)− x̃(k))]T } (4.B.55)

= E{ ˆ̃x(k) ˆ̃x(k)T +( ˆ̃x(k)− x̃(k))( ˆ̃x(k)− x̃(k))T } (4.B.56)

= Σ̃(k)+ P̃(k), (4.B.57)

see also [46]. This means that P̃(k) satisfies:

P̃(k) = Φ̃(k)− Σ̃(k). (4.B.58)

Inserting (4.B.52) - (4.B.58) into (4.B.49) results in:

E
 
(x̃(k)− ˆ̃x(k)|e(k))! = [Φ̃(k)− Σ̃(k)]C̃T R−1

e (k)e(k). (4.B.59)

Using (4.14), (4.19) and (4.21), the matrix Φ̃(k) can be expressed as a function of M̃(k) via:

M̃(k) = ÃΦ̃(k)C̃T , (4.B.60)

and so, (4.B.59) can also be written as:

E
 
(x̃(k)− ˆ̃x(k)|e(k))! = [Ã−1M̃(k)− Σ̃(k)C̃T ]R−1

e (k)e(k). (4.B.61)

The term Ã−1M̃(k) can also be written as:

Ã−1M̃ =



Ã−1
11 0

−Ã−1
22 Ã21Ã

−1
11 Ã−1

22

�

M̃1(k)
M̃2(k)

�

=



Ã−1
11 M̃1(k)

Ã−1
22 M̃2(k)− Ã−1

22 Ã21Ã
−1
11 M̃1(k)

�
. (4.B.62)

Similarly, Σ̃(k)C̃T can be written as:

Σ̃11(k) Σ̃12(k)
Σ̃21(k) Σ̃22(k)

�

C̃1
0

�
=



Σ̃11(k)C̃T

1
Σ̃21(k)C̃T

1

�
. (4.B.63)
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Inserting (4.B.62) and (4.B.63) into (4.B.61) results in

E



(x̃1(k)− ˆ̃x1(k))|e(k)
(x̃2(k)− ˆ̃x2(k))|e(k)

�
=


Ã−1
11 M̃1(k)− Σ̃11(k)C̃T

1
Ã−1

22 M̃2(k)− Ã−1
22 Ã21Ã

−1
11 M̃1(k)− Σ̃21(k)C̃T

1

�
R−1

e (k)e(k). (4.B.64)

Multiplying the first line by Ã21 and the second line by Ã22 concludes the proof of Proposition
4.3.



Chapter 5

On online model selection for
state estimation

5.1 Introduction

A common assumption in state estimation problems is that the available large scale
first principles model perfectly describes the true process that is to be monitored.
Specifically it is assumed that the available large scale model is of the form:

x(k+1) = f (x(k),u(k),w(k),θ0) (5.1)

y(k) = h(x(k),u(k),v(k),θ0) (5.2)

with θ0 ∈ R
nθ×1 a fixed known vector of process variables. The assumption that (5.1)-

(5.2) perfectly describes the process behavior is an important assumption because it
can be shown that the accuracy of the model can greatly affect the accuracy of the
estimated states, see for instance [55][90][101].

In practice the assumption that (5.1)-(5.2) perfectly describes the process behavior
is not realistic. Even if the available model of the form (5.1)-(5.2) is a perfect descrip-
tion of the process at a certain time instant k = k0, it is not assured that this model
description will remain perfect over time. Deviations might arise slowly (for instance
due to wear of process components) or might occur abruptly (for instance due to sud-
den sensor or actuator faults). In this chapter we will introduce a framework that can
deal with both types of errors.

In this chapter we will relax the assumption that (5.1)-(5.2) perfectly describes
process behavior. Instead of assuming that (5.1)-(5.2) is a perfect model, we will
assume that there exists a time varying parameter vector θ (k) such that the model of
the form:

x(k+1) = f (x(k),u(k),w(k),θ (k)) (5.3)

y(k) = h(x(k),u(k),v(k),θ (k)) (5.4)

is able to model the behavior of the process. The exact sequence of parameters θ (k)
that satisfy this assumption are assumed unknown. Note that although this assumption

97
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is a relaxation of the perfect plant assumption, it does not encompass all possible
modelling errors.

Although the parameters θ (k) are not known, it is often possible to estimate these
parameters simultaneously with the process states. A commonly used method to esti-
mate both states x(k) and parameters θ (k) is to create an extended version of the state
equation (5.1) in which time evolution of the parameter vector θ (k) is modelled as a
random walk: 


x(k+1)
θ (k+1)

�
=



f (x(k),u(k),w(k),θ (k))

θ (k)+wθ

�
(5.5)

with wθ (k) zero mean Gaussian white noise with an user defined covariance matrix
Qθ .

After introducing an extended state vector x̃(k) and an extended process noise w̃(k)
defined as:

x̃(k) =



x(k)
θ (k)

�
w̃ =



w(k)
wθ (k)

�
(5.6)

it is possible to write the extended model in the general state-space form:

x̃(k+1) = f̃ (x̃(k),u(k), w̃(k)) (5.7)

y(k) = h̃(x̃(k),u(k),v(k)). (5.8)

Since the model is now in the usual state-space form, we can use any nonlinear state
estimation technique to simultaneously estimate the states x(k) and the parameters
θ (k).

After tuning the noise covariance matrix Qθ of the random walk, we thus have a
model which can cope with variations in process variables θ . The price we have to pay
for the extra robustness in the simulation model is that if both states and parameters
are estimated, the variance error of the estimated states will increase. The additional
variance error increases with the number of parameters θ (k) that have to be estimated.

Instead of using a single model fixed to predict and estimate the state of the sys-
tem better results could be obtained using a multiple model approach. In this multiple
model approach we estimate the state x(k) and parameters θ (k) of the system using
multiple models. The first model is the nominal model (5.1)-(5.2) in which the pa-
rameters are assumed constant (θ (k) = θ (k−1)). Besides the nominal model we also
estimate the state of the system with one or more extended models of the form (5.3)-
(5.4). Based upon the fit of each model to the available measurements y(k) we then
(ideally) determine which filter has produced the best estimates for x(k) and θ (k) in
terms of the mean squared error. At time k+1 the selected estimation results for x(k)
and θ (k) form the starting point for each of the filters to predict and estimate the state
at time k+1, and so on.

The advantage of the multiple model approach is that it enables the user to get a fil-
ter estimate with a relatively small variance. The relatively small variance is obtained
by using the nominal model when the data indicates the θ (k) has not changed. The ex-
tended model (5.5) only has to be used when the data indicates that θ (k) has changed
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significantly. In all cases we avoid using a model structure that contains unnecessary
parameters that have to be estimated.

Using multiple models to estimate the state of a system is a technique that is often
encountered in Fault Detection and Isolation (FDI) literature [29]. In FDI literature
the model parameters θ (k) usually have the interpretation of possible faults. The pa-
rameters should nominally remain at θ = 0, but if a fault in the process occurs, it is
assumed that θ (k) �= 0. To isolate which fault has occurred, the parameter vector θ (k)
is estimated, often using a random walk model for θ (k) such as in (5.5). Those ele-
ments that deviate from zero correspond to the fault location. If no fault has occurred,
on average the best estimate of the state is obtained using the nominal model in which
θ = 0. When a fault has indeed occurred, better results are likely obtained using the
fault model (in which θ is a free parameter). The model selection problem in FDI
literature is thus to decide when it is necessary to estimate the parameters θ (k).

The FDI literature about model selection problems can be roughly divided in two
separate categories. The first category uses the nominal model to generate a residual
signal r(k). Once statistical tests such as simple linear χ 2-tests or nonlinear tests as
CUSUM (=Cumulative Sum) or SPRT (Sequential Probability Ratio Test) [74] on the
residual show that the nominal model is no longer valid, the extended model is used
to isolate the fault. For linear systems with Gaussian noise disturbances a popular
method to generate the required residual signal is to use the innovation sequence e(k)
(see (2.37) of the linear Kalman filter, so r(k) = e(k) [65]. This is commonly extended
to nonlinear systems by using nonlinear filters such as the extended Kalman filter or
particle filters instead of the linear Kalman filter to generate the innovation sequence
e(k) [20][45].

Instead of only using the fault model once it has been determined that the nominal
model is not valid, the second class of model selection algorithms uses a different pro-
cedure. At time k the states and parameters are estimated using all available models
(both nominal and fault models). After the estimation a selection algorithm is used
to determine which of the filter models will most likely have resulted in the best esti-
mates. The results of this model are then used again as a starting point for all available
models at time k + 1 and so on. The algorithm we will introduce in this chapter also
belongs in this class of methods.

In order to determine which model has resulted in the best possible state and pa-
rameter estimates, many different algorithms have already been suggested. The model
selection procedures in the second class of selection algorithms are often based on sta-
tistical criteria, see for instance [33]. Assume that n models of the form (5.1)-(5.2) are
available, denote these models as M i, with i = 1,2, . . . ,n. Then the filtering procedure
is carried out for each model, on data y. Afterwards, using Bayes conditional prob-
ability theory, the conditional probability p(M i|y) is computed. The model with the
highest conditional probability is then selected, and the state estimates based on this
model are used. The conditional probability p(M i|y) can be computed via:

p(Mi|y) = p(y|Mi)p(Mi)/p(y). (5.9)

Using this equation for complex process models is generally difficult in practice, be-
cause the term p(y|Mi) is not trivial to compute for non-linear systems and knowledge
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of the a-priori probability of each model p(M i) is rarely available.
An alternative approach to the model selection problem is presented in [91]. If a

moving horizon state estimator (MHE) is used for state estimation, the state estimation
problem is written as a weighted and regularized least squares problem. The problem
of model selection is therefore similar to model selection in system identification the-
ory. Indeed in system identification, model selection is used to determine the best
candidate model based upon the least squares fit of each candidate model to estima-
tion data. Given this similarity, the model selection is done using a selection criterion
from identification literature. In the case of [91] the Akaike Information Criterion
(AIC) is chosen. Advantages of this approach are that exact probability distributions
are no longer required, and the technique can also be easily adapted for non-linear
models. Drawbacks of this approach are that the technique can only be used in con-
junction with moving horizon estimators. Another drawback is that the AIC criterion
may not be the best criterion, since it was derived only for least squares problems
without weighting and regularization, while states are estimated with weighting and
regularization.

In this chapter a model selection procedure will be considered that is closely re-
lated to [91]. Instead of using the generic AIC criterion, a specialized criterion for
weighted and regularized least squares problems is derived. It will be shown that
such a selection criterion can also by used in conjunction with other filters than just
the MHE filter. Apart from deriving the new model selection algorithm, we will also
present the statistical properties of the new criterion.

The remainder of this chapter is organized as follows; in section 5.2 we will in-
troduce our model selection procedure. In section 5.3 we will derive the statistical
properties of the selection algorithm proposed in the previous section. Section 5.4
modifies the proposed selection scheme such that the results can be tuned. In the fi-
nal section of this chapter, the effectiveness of the model selection scheme will be
demonstrated in simulation examples.

5.2 Model selection for state estimation

As mentioned in the introduction, our objective is to estimate the state of a process
with the smallest possible mean squared error. To this end we assume we have avail-
able known inputs u(k), measured inputs y(k) and a set of candidate models (possibly
nonlinear). For each candidate model it is possible to design a state filter to and esti-
mate the state of the system. From all estimates, we wish to select that estimate which
has the smallest mean squared error.

In order to derive our model selection procedure we will (for simplicity) first as-
sume that the system is described by the following linear model:

x(k+1) = Ax(k)+Bu(k)+w(k) (5.10)

y(k) = Cx(k)+ v(k), (5.11)
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where w(k) and v(k) are Gaussian noise processes with

E



w(k)
v(k)

�
= 0 (5.12)

E



w(k)
v(k)

�
[wT

l vT
l ] =



Q 0
0 R

�
δk,l . (5.13)

If the model (5.10)-(5.11) perfectly describes the true system, an optimal estimate
of the state vector x(k) at each time k can be obtained using a Kalman filtering proce-
dure. As discussed in section 2.3.2 such a filtering procedure consists of two steps. In
the prediction step, a prediction x̂(k + 1|k) of the state vector is given, along with its
covariance matrix P̂x(k+1|k). In the measurement update, the measurement y(k +1) is
used together with the predicted state x̂(k+1|k) to compute the estimate x̂(k+1|k+1)
and to produce its covariance matrix P̂x(k+1|k+1). An important result for the remain-
der is that the measurement update in a Kalman filtering procedure can be seen as the
solution of a Weighted and Regularized Least Squares (WRLS) problem [46]:

x̂(k|k) = argmin
x

‖y(k)−Cx‖2
R−1 +‖x− x̂(k|k−1)‖2

P̂−1
x(k|k−1)

, (5.14)

with ‖z‖2
W = zTWz for z ∈ R

n (see also (2.41)).
If the system is non-linear, such as e.g. in (5.1)-(5.2), an estimate of the state vector

x(k) can again be obtained using very similar procedures (e.g. using the EKF or UKF
instead of the normal Kalman Filter) which also consist of two steps: a prediction step
and a measurement update step. Define ŷ(k,x) as the predictor of the output vector
y(k) using the state vector x and the available model (5.1)-(5.2) i.e.

ŷ(k,x) = Ev(k)h(x,u(k),v(k)). (5.15)

If (x− x̂(k|k−1)) is Gaussian distributed, and

ŷ(x) ≈Cx ∀ ‖(x− x̂(k|k−1))‖2
P−1
x̂(k|k−1)

< χ2
α , (5.16)

then the the measurement update in the filtering procedure is still approximately a
WRLS problem:

x̂(k|k) = argmin
x

‖y(k)− ŷ(k,x)‖2
R−1 +‖x− x̂(k|k−1)‖2

P−1
x̂(k|k−1)

, (5.17)

In practice the measurement update in a filtering procedure will still be accurately
described by (5.17), even if (x− x̂(k|k−1)) is not exactly Gaussian distributed.

The state estimation procedure delivers an estimate x̂(k) = x̂(k|k) for x(k) under
the assumption that the available model perfectly describes the true system. As stated
in the introduction, often the available model is only an approximation of the true
system and the quality of the estimate of x(k) will depend on the quality of the chosen
model. Consequently, the model will have to be chosen in such a way that the state
estimation procedure based on this model delivers a good estimate of x(k). As already
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mentioned, we will consider the particular situation where we have several candidate-
models (e.g. a model with fixed parameters and a similar model with extra time-
varying parameters) and we have to select, among these models, the model which will
deliver the best estimate of the state vector. To make this selection, only known inputs
and measured outputs are available.

Our selection procedure will be based on a measure of the quality of the model
for the estimation of the state vector. Different measures can be considered for this
purpose. In this chapter, we will define a measure of quality which is very similar to
the quality measures used in system identification. Given a model of the type (5.1)-
(5.2) and given the estimate x̂(k) of the state vector at time k obtained using the WRLS
problem (5.17), the measure of quality V(k) at time k is defined as follows:

V(k) = Ex̂(k)V (x̂(k),k) (5.18)

with V (x,k) = Ey(k)‖y(k)− ŷ(x)‖2
R−1 . (5.19)

Using (5.19), we see that V (x̂(k),k) represents the ability of the model and the avail-
able estimate x̂(k) to predict not only the particular realization of the output vector
y(k) that we used to estimate x̂(k), but also all other possible realizations of y(k). In
(5.19) the prediction error y(k)− ŷ(x) is weighted with R−1, to take into account the
variability of the measurements y(k). The quantity V (x̂(k),k) is still a random vari-
able since x̂(k) is determined using noisy data. Therefore, it is better to consider its
mean as measure of quality for the model such as we have done in (5.18). From the
definition of V(k), we see that the smaller the time function V(k) is, the better is the
model.

We have thus defined a measure V(k) of the quality of a model. This quantity
can only be used in a quality assessment procedure if it is possible to compute (or to
approximate) V(k) using the available data. In order to find a method for computing
(or estimating) V(k), we first notice the strong analogy between V(k) and the Akaike’s
Final Prediction Error (FPE) J p(M) that is used to assess the quality of a model M in
system identification theory. The FPE is defined as (see [56]):

Jp(M) = Eθ̂Vsysid(θ̂ ) (5.20)

in which

θ̂ = argmin
θ

1
N

N
k=1

‖y(k)− ŷ(k,θ )‖2 and (5.21)

Vsysid(θ ) = lim
N→∞

1
N

N
k=1

Ey(k)‖y(k)− ŷ(k,θ )‖2, (5.22)

with y(k) for k = 1, . . . ,N a set of given output measurements and ŷ(k,θ ) the prediction
of the output using model parameters θ .

We can indeed interpret the FPE as a special case of V(k). After substituting x̂(k)
for θ both criteria are equivalent if x̂(k) is estimated using (5.14) with R = I and
P̂−1

x(k+1|k) = 0.
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Note that the expected value operator E θ̂ in (5.20) corresponds to the expected
value operator Ex̂ in (5.18).

From system identification literature we know that the exact FPE cannot be com-
puted as this would require an infinite amount of data. Therefore in practice the fol-
lowing approximation is commonly used [1]:

Jp(M) ≈ 1
N

N
k=1

�
‖y(k)− ŷ(k, θ̂ )‖2

�
+ λ0

2dM

N
, (5.23)

with dM the dimension of θ and λ0 = Vsysid(θ0), with θ0 the true model parameters.
Since λ0 is generally unknown, the following estimate of λ 0 is often used:

λ̂0 =
1

N−dM

N
k=1

�
‖y(k)− ŷ(k, θ̂ )‖2

�
. (5.24)

Substitution λ̂0 for λ0 in (5.23) results in:

Jp(M) ≈ N +dM

N−dM

1
N

N
k=1

�
‖y(k)− ŷ(k, θ̂ )‖2

�
. (5.25)

Like the FPE J p(M), it is also impossible to compute our model quality criterion
V(k) and thus we require a method to estimate our model quality measure. In [56]
an approximation result for V(k) is given for the case where x̂(k) has been estimated
by minimizing the WRLS problem (5.17) with R = I and with P̂−1

x̂(k+1|k) = δ I with δ
a positive real constant. However, in practice P̂−1

x̂(k+1|k) cannot be written as δ I, which
implies that the approximations in [56] can not be used directly. Therefore the results
of [56] need to be extended in order to be able to find a computable expression to
accurately approximate V(k).

Proposition 5.1 Let us consider the time instant k and the output vector y(k) collected
from the true system at that instant. Let us also consider the measure of quality V(k)
defined in (5.18)-(5.19). Furthermore assume that the estimate x̂(k) of the state vector
in (5.18)-(5.19) is obtained via the following weighted and regularized least squares
problem which is equivalent to (5.17):

x̂(k) = argmin
x

(V (x,k) +(x− x(k)#)T P−1(x− x(k)#)
(

(5.26)

in which x(k)# is a pre-specified state vector, P−1 is a positive semi-definite regular-
ization matrix, and V (x,k) is a weighted least squares criterium:

V (x,k) = ‖y(k)− ŷ(x)‖2
R−1 . (5.27)

Then if x(k)# ≈ x∗(k) = argminxV (x,k) the following expression is a generalized
version of (5.23) and can be used to approximately compute V(k):

V(k) ≈V (x̂(k),k)+4tr
*
[(ψT R−1LR−T ψ)]

�
V
′′(x∗(k),k)+2P−1

�−1+
, (5.28)
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where L = E(eeT ) with e = y(k)− ŷ(x∗(k)) and

ψ =
∂ ŷ(x)

∂x

����
x=x∗(k)

, (5.29)

V
′′(x∗(k),k) =

∂ 2V (x,k)
∂x2

����
x=x∗(k)

, (5.30)

under the condition that y(k)− ŷ(x∗(k)) is approximately a white noise and that the
dimension of the vector y(k) is sufficiently large.

Proof See Appendix 5.A.

As mentioned in the statement of Proposition 5.1, the derivation of the approxima-
tion (5.28) requires that: x(k)# ≈ x∗(k) = argminxV (x,k). Using this particular value
for x#(k) ensures that the estimate x̂(k) is unbiased. This additional requirement is also
present in the less general version of [56] 1. In practice the value x∗(k) is generally
unknown and one can only assume that x(k)# ≈ x∗(k).

The estimated asymptotic fit V(k) in (5.28) is dependent on L, which represents the
covariance of the minimal asymptotic prediction error. For perfectly modelled systems
with additive white noise, L = R, the covariance of the additive noise. The estimated
asymptotic fit V(k) is the sum of the achieved fit V (x̂(k),k) on the measurement data
and a term containing V

′′(x∗(k),k) and ψ . V
′′(x∗(k),k) can be approximated by the

second derivative of V (x̂(k),k). Similarly, ψ can be approximated using the derivative
of ŷ(x) evaluated in x̂(k) instead of x∗(k). If the measurement equation of the model
is linear, for instance as is the case in (5.11), such approximations are not necessary
as illustrated in the following corollary:

Corollary 5.2 Consider the situation as assumed in Propostition 5.1. If additionally
the measurement equation is of the form:

y(k) = Cx(k)+ v(k) with (5.31)

E{v(k)} = 0 and E{v(k)v(k)} = R, (5.32)

then

V(k) ≈V (x̂(k),k)+2tr
*
[(CT R−1LR−TC)]

�
CT R−1C+P−1

�−1+
, (5.33)

where L = E(eeT ) with e = y(k)−Cx∗(k).

Proof Using the linear output equation (5.31) it is easy to show that:

ψ =
∂ ŷ(x)

∂x

����
x=x∗(k)

= C (5.34)

1Note that expression (5.28) does not correspond to expression (16.36) in [56] as should be the case for
R = I and P−1

x̂(k+1|k) = δ I. As a result of Proposition 5.1 an oversight in the derivation of (16.36) in [56] has

been found, as acknowledged in [57].
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and

V
′′(x∗(k),k) =

∂ 2V (x,k)
∂x2

����
x=x∗(k)

= 2CTR−1C. (5.35)

Substituting these results in (5.28) directly leads to (5.33).

Let us now summarize and define our model selection procedure. We wanted to select,
among a set of candidate-models, the model which delivers the best estimate of the
state vector. We have defined for this purpose a measure V(k) of the quality of a
model. This measure is a time function and can be approximated using (5.28). In
order to make the selection, we use this quality measure in the following procedure:

Procedure 5.3 We want to determine the best filter model among n available models
denoted M1, . . . ,Mn. Denote the state estimates and associated covariances obtained

using each of these models at time k as x̂ [i](k|k) and P[i]
x̂(k|k) with i = 1, . . . ,n. Then the

selection procedure is as follows:

1. At some initial time k initialize all filters such that both x̂ [i](k|k) and P[i]
x̂(k|k) are

the same for all i = 1, . . . ,n.

2. Compute state estimates and estimation covariances x̂ [i](k+1|k+1)
and P[i]

x̂(k+1|k+1) for all models.

3. Estimate the model quality V(k + 1) for all filter models using (5.28). Denote
the estimated model quality at time k+1 for the i-th model as V̂[i](k+1).

4. Determine the model which has the best model quality via:

isel = argmin
i

V̂[i](k+1). (5.36)

5. Set

k = k+1 (5.37)

x̂[i](k|k) = x̂[isel ](k|k) ∀ i = 1, . . . ,n (5.38)

P[i]
x̂(k|k) = P[isel ]

x̂(k|k) ∀ i = 1, . . . ,n (5.39)

and go to step 2.

5.3 Analysis of the selection procedure

5.3.1 Introduction

Most of the model selection algorithms that are currently in use such as CUSUM,
SPRT and Bayesian or likelihood based model have their origin in the field of statistics.
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As a result, the performance of these selection algorithms is often expressed in statistic
terms such as the probability of choosing the optimal model.

In contrast, the chosen selection criterion V(k) (5.18) is a deterministic quantity.
As a result, it has no statistical properties. In practice, however, the criterion (5.18) is
never used, because it cannot be evaluated using finite amounts of data. In the practical
model selection Procedure 5.3 we thus used the approximate criterion V̂(k) defined in
(5.28). This approximation is dependent on measurements y(k) that are influenced by
stochastic terms w(k) and v(k). As a result the outcome of the selection Procedure
5.3 itself is also a stochastic variable. Since the outcome of the selection procedure
is a stochastic variable we can describe its properties in terms of the probabilities of
choosing either the right or wrong model.

In this section we will analyze the selection Procedure 5.3. We will express the
performance of the selection procedure in terms of the probability of selecting either
the right or wrong model. Also we will compute the expected quality of the state
estimate obtained using model selection. For reasons of complexity we will limit
our analysis to the specific case in which the selection algorithm has to decide be-
tween two linear models denoted by M1 and M2. These models have system matrices
A[m],B[m],C[m],Q[m] and R[m] for m ∈ {1,2}.

We limit the analysis to linear models in order to ensure that the mathematics
involved in the analysis remains tractable. Even for linear models the resulting ex-
pressions to compute the statistical properties of the selection procedure are long and
not trivial to evaluate. Using nonlinear models would quickly result in expressions
which can no longer be evaluated analytically.

By limiting the analysis to linear model structures we can only use the results
of the analysis to compute the statistical properties of selecting between linear model
structures. For linear models it thus allows us to compare the proposedmodel selection
procedure with existing selection techniques. The results of the analysis cannot be
used to compute the properties of the selection algorithm when nonlinear models are
used.

The probability of selecting either M1 and M2 will in general depend on previ-
ous selection results. To eliminate this complication in the analysis we will use the
following assumption:

Assumption 5.4 For time samples 0 . . . (k−1) the true system has been equivalent to
model M1, and the state vector has been estimated using model M1.

The previous assumption implies that the estimated state at time k−1, x̂(k−1|k−
1) is unbiased and the estimation error covariance is indeed Px(k−1|k−1).

5.3.2 False alarm and detection probabilities

If we could exactly compute V1(k) and V2(k), the optimal state estimate would al-
ways be selected. However since the selection is performed using estimates of these
quantities, a wrong model could be selected. Given the assumption 5.4, there are only
two possibilities to select the wrong model:
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• Situation S1: Model M2 is selected while M1 still describes the true system.

• Situation S2: Model M1 is selected while the true system has switched to model
M2.

In the field of FDI, Pr(S1), the probability that situation 1 occurs, i.e. M2 is selected
while M1 still describes the true system, is called the false alarm probability. The
probability 1−Pr(S2), with Pr(S2) the probability that situation 2 occurs, i.e. M2

is selected when the true system has indeed switched to M2, is called the detection
probability.

In this section we will show how Pr(S1) can be computed. The detection proba-
bility 1−Pr(S2) can be computed using a similar calculation.

The probability Pr(S1) is equivalent with the probability that

V̂2(k) < V̂1(k) (5.40)

while M1 still describes the true system. Using (5.33) this can be rewritten as:

V1(x̂[1](k|k),k)+2tr

,
C[1]T R[1]−T

C[1]


C[1]R[1]−1

C[1]T +P[1]
x̂(k|k−1)

−1
�−1-

>

V2(x̂[2](k|k),k)+2tr

,
C[2]T R[2]−1

R[1]R[2]−T
C[2]



C[2]R[2]−1

C[2]T +P[2]
x̂(k|k−1)

−1
�−1-

(5.41)

with V1(x̂[1](k|k),k) and V2(x̂[2](k|k),k) the achieved fits of the estimated states to the

measurement data using model M1 and model M2 respectively, P[1]
k|k−1 and P[2]

k|k−1 are
error covariance matrices of the predicted state using Kalman filters based on both
models. To obtain (5.41) from (5.33) we used L = R [1] since M1 is assumed to per-
fectly describe the true system.

As can be seen in this last equation the Vi(x̂[i](k|k),k) terms are the only data
dependent terms. This means that the condition for a false alarm can be abbreviated
to

V1(x̂[1](k|k),k)−V2(x̂[2](k|k),k) > P (5.42)

with P a constant that is only dependent on the estimation models, i.e. P is defined as:

P = 2tr

,
C[2]T R[2]−1

R[1]R[2]−T
C[2]



C[2]R[2]−1

C[2]T +P[2]
x̂(k|k−1)

−1
�−1-

−

2tr

,
C[1]T R[1]−T

C[1]


C[1]R[1]−1

C[1]T +P[1]
x̂(k|k−1)

−1
�−1-

. (5.43)

Behavior of the achieved fits Vi(x̂[i](k|k),k)
To understand when condition (5.42) is met, it is necessary to understand how phe-
nomena such as model inaccuracies, errors in previous estimates and stochastic effects
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in the measurement data influence the left hand side of (5.42). Specifically, we want
to compute the probability density function of the left hand side of (5.42). In order
to compute this distribution function, we first need to know how model errors and
stochastic effects influence each of the achieved fits Vi(·), i = {1,2}. This behavior of
the achieved fit is computed in the following proposition:

Proposition 5.5 Suppose that at time k−1 we have an unbiased estimate x̂(k−1|k−
1) of the true state x(k−1), with known error covariance matrix Px̂(k−1|k−1). Assume
that at at next time step k the true system is described by the model (A,B,C,Q,R),
but the estimate x̂(k|k) of the true state vector x(k) is achieved using a model M =
(A[m],B[m],C[m],Q[m],R[m]) which can be different from the “true” model. Then, the fit
V (x̂(k|k),k) at time k (see (5.27)) can be expressed as follows:

V (x̂(k|k),k) = (γ + Ψe)TR[m]−1
(γ + Ψe) (5.44)

= ‖γ + Ψe‖2
R[m]−1 , (5.45)

with

• e a zero mean Gaussian noise vector which has a covariance I and which is
independent of the choice of the model M,

• Ψ ∈ R
ny×(2nx+ny) given by

Ψ = (I−C[m]K[m])
�

C[m]A[m]P
1
2
x̂(k−1|k−1) CQ

1
2 R

1
2

�
, (5.46)

• γ ∈ R
ny×1 defined as

γ = (I−C[m]K[m])
�
(C−C[m])(Ax(k−1)+Bu(k−1))+C[m]

'
(A−A[m])x(k−1)

+(B−B[m])uk−1

(�
(5.47)

with K[m] the Kalman gain computed using the estimation model M.

Proof The proof can be found in the Appendix.

Note that if the ”true” model is used to estimate state of the system, i.e. A = A [m],
B = B[m], C = C[m], the estimate x̂(k|k) is unbiased and thus γ = 0. This result is a
consequence of (5.47).

False alarm condition

Let us now return to the determination of the probability of selecting a wrong model
when using the model selection procedure of Section 5.2. In the context of Assump-
tion 5.4, this probability is equivalent to the probability that (5.42) occurs when M 1
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still represents the true system at time k. Using Proposition 5.5 in this context, we
have that:

V1(x̂[1](k|k),k) = ‖Ψ1e‖2
R[1]−1 and V2(x̂[2](k|k),k) = ‖γ2 + Ψ2e‖2

R[2]−1 (5.48)

with γi and Ψi (i = 1,2) equal to the γ and Ψ of Proposition 5.5 with
(A[m],B[m],C[m],Q[m],R[m]) = (A[i],B[i],C[i],Q[i],R[i]) and
(A,B,C,Q,R) = (A[1],B[1],C[1],Q[1],R[1]). Note that γ1 = 0 since, at time k, we assume
M1 to be equivalent to the true system. Note also that the noise e is the same in the
expressions of V1(x̂[1](k|k),k) and V2(x̂[2](k|k),k) since e is independent of the choice
of the model. Finally, note that the unknown xk−1 in the expression of γ2 will be
approximated by its estimate.

Under the condition that M1 still describes the true system at time k, (5.42) can
thus be rewritten as:

‖Ψ1e‖2
R[1]−1 −‖γ2−Ψ2e‖2

R[2]−1 > P. (5.49)

Consequently, the probability that (5.42) holds when M 1 still describes the true system
at time k is equal to the probability that (5.49) holds. To compute this probability, the
exact distribution function of the left hand side of (5.49) is required. In the general
case, there is no standard distribution which describes the left hand side of (5.49).
Only in the specific case that estimates of model M2 are unbiased, which means γ2 = 0,
the exact distribution can be found. An example of a situation in which estimates of
model M2 are unbiased is when model M2 is an overparametrized version of model
M1 meaning for instance that it models system parameters that are actually constants
as variable states using a random walk model. This example was also considered in the
introduction. We shall first compute the exact false alarm probability in the specific
case that γ2 = 0 and then give approximative results for the more general case where
γ2 �= 0.

False alarm probability if γ2 = 0 (M2 unbiased)

So first assume that γ2 = 0. In this specific case, (5.49) becomes:

eTQe > P (5.50)

with
Q = ΨT

1 R[1]−1
Ψ1−ΨT

2 R[2]−1
Ψ2. (5.51)

The left hand side of (5.50) is the weighted 2-norm of a Gaussian stochastic variable.
Define peT Qe(ξ )dξ as the probability that eTQe ∈ (ξ ,ξ +dξ ). In the special case in
which Q = I the probability density function peT Qe(ξ ) is of course equivalent with the
χ2 distribution. For arbitrary Q the distribution function p eT Qe(ξ ) can be computed
using its moment generating function. The moment generating function φ(t) that
describes the distribution peT Qe(ξ ) is [88][sect. 15.15]:

φ(t) =
.

p

(1−2 jtλp)−
1
2 , (5.52)



110 5 On online model selection for state estimation

with λp the pth eigenvalue of Q and j2 = −1. The probability density function of
peT Qe(ξ ) can now be found by taking the inverse Fourier transform of φ(t):

peT Qe(ξ ) =
� ∞

−∞
φ(t)e jξ tdt. (5.53)

With this probability density function the probability that model M 2 is selected, which
shall be denoted by P2, can be computed via:

Pr(S1) =
� ∞

P
peT Qe(ξ )dξ . (5.54)

False alarm probability if γ2 �= 0 (M2 biased)

Returning to the more general case, in which γ2 �= 0, then the exact probability density
function of V1(·)−V2(·) cannot be computed exactly. As a result we cannot directly
compute the expected false alarm rate using (5.54). Since we cannot compute the exact
distribution function, we will construct an approximate distribution. Even though it
may not be possible to construct the full true distribution function of V 1(·)−V2(·), we
can compute its first two moments, i.e. its mean and variance. The first two moments
can be computed using the following proposition:

Proposition 5.6 Let V1(x̂[1](k|k),k) and V2(x̂[2](k|k) be defined as in (5.48), with Ψ1,
Ψ2, R[1], R[2] fixed known matrices, γ2 a known fixed vector and e a Gaussian white
noise vector with e ∼ N(0, I). Then the mean and variance of V1(·)−V2(·) are given
by:

E

�
V1(x̂

[1]
k ,k)−V2(x̂

[2]
k ,k)

�
= −γT

2 R[2]−1
γ2 + tr(Q) (5.55)

var
�
V1(x̂

[1]
k ,k)−V2(x̂

[2]
k ,k)

�
= 4γT

2 R[2]−T
ΨT

2 Ψ2R
[2]−1

γ2 + tr
'
Q(Q+QT )

(
(5.56)

with Q defined as in (5.51).

Proof For the proof of this proposition, the reader is referred to section 5.C.

To find an approximate distribution ofV1(·)−V2(·) first consider the special case in
which γ2 = 0 and Q = I. As already discussed above, we know that for this particular
case the distribution for V1(·)−V2(·) is known to be a χ 2 distribution. The exact
distribution of V1(·)−V2(·) can be easily constructed using a χ 2-distribution with a
number of degrees of freedom ν such that its first two moments match (5.55)-(5.56).
For other values of γ2 and Q it is no longer possible to find a value for ν such that the
first two moments of the resulting χ 2-distribution match (5.55)-(5.56). Accordingly
simulations show that for γ �= 0 and Q �= I the χ 2-distribution is a poor approximate
for the true distribution ofV1(·)−V2(·). Although the χ 2-distribution is able to exactly
approximate the distribution of V1(·)−V2(·) for special choices of γ2 and Q, we thus



5.3 Analysis of the selection procedure 111

see that it is not generic enough to approximate the distribution for V1(·)−V2(·) for
arbitrary γ2 and Q.

The Γ-distribution is a generalized version of the χ 2-distribution. Instead of a sin-
gle shape parameter ν , the Γ distribution has two shape parameters a and b, which
can be used to independently set the mean and variance of the distribution. The extra
degree of freedom allows us to the better approximate the distribution the true distri-
bution of V1(·)−V2(·). The pdf of the Γ-distribution, denoted by f Γ(x|a,b) is given
by:

fΓ(x|a,b) =
1

baΓ(a)
xa−1e

x
b , (5.57)

with a,b the scalar parameters that can be used to determine the shape of the Γ-
distribution. It can be shown that for every χ 2 distribution with ν degrees of freedom,
there exists a specific choice for a and b such that the resulting Γ-distribution is equiv-
alent to the χ2-distribution. The mean and variance of the Γ-distribution, denoted as
µΓ and σ 2

Gamma respectively, can be determined via:

µΓ =
�

x
x fΓ(x|a,b)dx = ab (5.58)

σ2
Γ =

�
x
(x− µΓ)2 fΓ(x|a,b)dx = ab2. (5.59)

Simulations show that if we choose a and b such that the first two moments of the
Γ-distribution (5.58)-(5.59) match the first two moments of V1(·)−V2(·) (see (5.55)-
(5.56)), then the resulting Γ-distribution is a good approximation for the true distri-
bution of V1(·)−V2(·). In order to match the first two moments of V1(·)−V2(·), the
shape parameters a and b should be chosen as:

a =
−γT

2 R[2]−1γ2 + tr(Q)�
4γT

2 R[2]−T ΨT
2 Ψ2R[2]−1γ2 + tr(Q(Q+QT ))

� 1
2

, (5.60)

b =
4γT

2 R[2]−T ΨT
2 Ψ2R[2]−1γ2 + tr

/
Q(Q+QT )

0
−γT

2 R[2]−1γ2 + tr(Q)
. (5.61)

Simulations also show that the approximation is especially good if E[V1(·)−V2(·)] >
0. An example of such a simulation result is provided in Figure 5.1. Indeed in this
Figure we see that the approximate Γ-distribution obtained by matching the first two
moments is an accurate approximation of the experimentally obtained histogram.

Substituting the approximating Γ-distribution for the true distribution in (5.54), we
can approximately compute the expected false alarm rate of our selection procedure
using:

Pr(S1|M1) ≈
� ∞

P
fΓ(ξ ,a,b)dξ . (5.62)
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Figure 5.1 Simulation example in which an experimentally obtained histogram of the distri-
bution of V1(·)−V2(·) (for γ �= 0) is compared with the approximate Γ-distribution whose first
two moments are chosen equal to (5.55)-(5.56).

Computing the detection probability

In the previous subsections, we demonstrated how the false alarm probability can be
computed. In this section we will show how we can compute the detection probability
of the selection procedure.

In order to compute the detection probability in this subsection we will assume
that up to the time instant k− 1 the true model of the process is given by M 1. We
also assume that model M1 has been used to estimate the state of the system. At time
k the true process model changes to M2. The detection probability in this situation
corresponds with the probability that the selection procedure chooses to estimate the
state of the system using model M2.

Using Procedure 5.3 it is easily shown that the detection probability corresponds
with the probability that

V̂2(k) < V̂1(k) (5.63)

while M2 describes the true system. Using (5.33) the previous expression can be
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rewritten as:

V1(x̂[1](k|k),k)+2tr

,
C[1]T R[1]−T

C[1]


C[1]R[1]−1

C[1]T +P[1]
x̂(k|k−1)

−1
�−1-

>

V2(x̂[2](k|k),k)+2tr

,
C[2]T R[2]−1

R[1]R[2]−T
C[2]



C[2]R[2]−1

C[2]T +P[2]
x̂(k|k−1)

−1
�−1-

(5.64)

or
V1(x̂[1](k|k),k)−V2(x̂[2](k|k),k) > P (5.65)

with P defined as in (5.43).
Note that the condition for detection (5.65) is exactly the same as the condition

for a false alarm (5.42). The only difference between the two conditions is that when
computing the false alarm probability, we assume that the true model of the system
corresponded to M1, while in order to compute the detection probability we assume
that M2 is the true model for the system.

Since the condition for a false alarm is similar to the condition for a successful
detection, the same expressions that were previously use to compute the false alarm
probability can again be used to compute the detection probability, with only two
modifications resulting from the fact that M2 describes true system instead of M1 in
the previous subsections:

1. When computing the false alarm probability we used γ 1 = 0, because the state
estimate of model M1 was unbiased. Since M1 no longer corresponds the the
true model, we cannot guarantee that it still holds that γ1 = 0.

2. While computing the detection probability, we know that the the state estimate
using model M2 is unbiased. As a result we have that γ2 = 0.

Apart from these alteration the computation of the false alarm probability is com-
pletely similar to the computation of the false alarm probability.

Expected state estimation error after selection

Besides statistical properties such as the false alarm and detection probabilities, we
are also interested in the accuracy of the estimated state after model selection. In this
section we will assume that the following error measure is used to assess the accuracy
of the estimated state:

E(k) = E‖x(k)− x̂(k)‖2
W . (5.66)

The measure above is the expected quadratic estimation error at time k, weighted using
an user defined semi-positive definite weighting matrix W .

If we do not consider model selection for the moment (i.e. we use a fixed model
to estimate the state of the system), we can distinguish two situations when estimating
the state of a system:
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1. the state of the system is estimated using the true model of the system;

2. the state of the system is estimated using a model other than the true system.

In both cases the expected state estimation error can be computed using the fol-
lowing proposition:

Proposition 5.7 Suppose at time k− 1 we have an unbiased estimate x̂(k− 1|k− 1)
of the true state x(k− 1), with known error covariance matrix Px̂(k−1|k−1). Consider
now time k. At time k, the true system is still described by the model (A,B,C,Q,R),
but the estimate x̂[m](k|k) of the true state vector x(k) is determined using a model
M = (A[m],B[m],C[m],Q[m],R[m]) which can be different from the “true” model. Then,
the estimation error E(k) can be written as:

E(k) = E
�
(κ + Φe)TW (κ + Φe)

�
(5.67)

= κTWκ + tr
'

ΦTWΦ
(
, (5.68)

with κ ∈ R
nx×1 defined as:

κ = (I−K [m]C[m])
�
(A−A[m])x(k)+ (B−B[m])u(k)

�
−K[m](C−C[m])(Ax(k)+Bu(k)) (5.69)

and Φ ∈ R
nx×(2nx+ny) defined as

Φ =
�

(I−K[m]C[m])A[m]P
1
2
x̂(k−1|k−1) (I−K[m]C)Q

1
2 K[m]R

1
2

�
. (5.70)

Proof
The proof can be obtained similarly to the proof of proposition 5.5. The propo-

sition follows after substituting (5.B.15) and (5.B.16) into (5.66) and regrouping the
deterministic and stochastic terms.

Note that the vector e in (5.67) is still the same Gaussian noise vector as in (5.44).
Note that in the special case in which A = A[m], B = B[m], C =C[m] it can be shown

that ΦΦT = Px̂(k|k), the error covariance matrix of the Kalman estimate at time k (see
(2.36)).

Proposition 5.7 gives an expression for E(k) when a fixed model used to estimate
the state of the system. Now consider the situation where two models are available
and the Procedure 5.3 detailed in section 5.2 is again used to determine which model
will generate the estimated state. Like in the previous section we will again assume
that model M1 perfectly describes the true model, while model M2 contains some
modeling errors. In this case, the expected error E(k) needs to be computed differently.
First define D1 as all realizations of the noise vector e which causes condition (5.49)
to be met (meaning the the correct model is selected), and D 2 as all the realizations of
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e for which (5.49) is violated (meaning the wrong model is selected):

D1 = {e : eT ΨT
1 R[1]−1

Ψ1e− (γ2−Ψ2e)R[2]−1
(γ2 −Ψ2e) < P} (5.71)

D2 = {e : eT ΨT
1 R[1]−1

Ψ1e− (γ2−Ψ2e)R[2]−1
(γ2 −Ψ2e) > P}. (5.72)

Since e is just a Gaussian distributed noise vector, with known mean and variance, its
probability density function (pdf) is completely known. Denote the pdf of e as p e(e).
Using these definitions the expected estimation error of the state can be expressed as:

E(k) =
�

e∈D1

(κ1 + Φ1e)TW (κ1 + Φ1e)pe(e)de

+
�

e∈D2

(κ2 + Φ2e)TW (κ2 + Φ2e)pe(e)de. (5.73)

Unfortunately, to the knowledge of the author there is no analytical solution to this
last expression, meaning that one has to resort to numerical methods for computing
the expected estimation error. If the dimension of the state vector x or the measure-
ment vector y is large then the usual gridding methods cannot be used. In those cases
randomized algorithms such as [89] may be a viable alternative.

If the user is only interested in a rough approximation of the expected estimation
error, the following approximation can also be used:

E(k) ≈ (1−Pr(S1|M1))E1(k)+Pr(S1|M1)E2(k), (5.74)

with Pr(S1) the probability that model M2 is selected as calculated with either (5.54)
or (5.62) and Ei the expected estimation error if only model M i had been used (i =
{1,2}), as computed in (5.67).

5.4 Tuning the selection algorithm

In the previous section we analyzed the properties of the model selection using Pro-
cedure 5.3. The result of the previous section allows us, for specific cases to compute
the properties of the selection algorithm. Unfortunately, Procedure 5.3 provides no
method of influencing the results as there are no tuning parameters in the selection
procedure. In this section we will present two modifications to the filter model selec-
tion procedure that allow the user to influence the properties of the selection process.

Our first modification regards the second term in (5.28), which we will call the
penalty term. This penalty term is a generalized version of the penalty term λ 0

2dM
N in

(5.23). In time series analysis it has been shown that using this penalty the criterion to
select models using a finite amount of measurement data y generally causes a model
to be selected for which the number of parameters is too high. This is especially true
if the number of data N is low [15][16]. Many solutions for this problem have been
suggested. In [15][16] the suggested solution to this problem is to use a modified
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selection algorithm with altered penalty term:

Jp(M,α) ≈ 1
N

N
k=1

�
‖y(k)− ŷ(k, θ̂ )‖2

�
+ αλ0

2dM

N
. (5.75)

The extra parameter α can be used to influence the selection results using the modified
FPE criterion. In the field of time series analysis good results have been reported using
α = 1.5.

Because our filter model quality criterion V̂(k) is very similar to the FPE criterion
it is likely that it also tends to select models with too many degrees of freedom. In the
example discussed in the introduction, this means that the model with the extra random
walk parameter would be chosen more often than necessary. A solution can be easily
constructed by also including the factor α . The corrected criterion thus becomes:

V̂(k,α) = V (x̂(k),k)+4α tr
*
[(ψT R−1LR−T ψ)]

�
V
′′(x∗(k),k)+2P−1

�−1+
. (5.76)

In terms of our analysis in the previous section, using larger values for α will increase
P in (5.43). In practice this means that the model selection procedure is less likely to
select models that have a high number of free variables.

Although our chosen filter model quality measure is a deterministic quantity, both
the approximation (5.28) and the corrected version (5.76) are stochastic variables,
because they are both dependent of the data y(k) via V (x̂(k),k). Consequently the re-
sults of the selection procedure are dependent on the realization of measurements y(k).
With our second modification to the selection procedure we aim to reduce variability
of the estimated model quality V̂(·). Instead of using the estimated model quality at
one time instant only, it is possible to use the average model quality of the last M time
instances for model selection. By using an averaged model quality the probability of
false alarms and missed detection should decrease.

After both modifications, Procedure 5.3 becomes:

Procedure 5.8 Assume that we want to determine the best filter model among n avail-
able models denoted M1, . . . ,Mn. Denote the state estimates and associated co-

variances obtained using each of these models at time k as x̂ [i](k|k) and P[i]
x̂(k|k) with

i = 1, . . . ,n. Then the selection procedure is

1. At some initial time k0 initialize all filters such that both x̂[i](k0|k0) and P[i]
x̂(k0|k0)

are the same for all i = 1, . . . ,n.

2. Compute state estimates and estimation covariances x̂ [i](k|k) and Px̂(k|k)[i] for all
models for k = k0 +1, . . . ,k0 +M.

3. Compute the estimated model quality V(k) for k = k0 + 1, . . . ,k0 + M for all
filter models using (5.76). Denote the approximate model quality at time k for
the i-th model as V̂[i](k).
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4. Determine the model which on average had the best model quality via:

isel = argmin
i

1
M

k=k0+M
k=k0+1

V̂[i](k). (5.77)

5. Set

k0 = k0 +M (5.78)

x̂[i](k0|k0) = x̂[isel ](k0|k0) ∀ i = 1, . . . ,n (5.79)

P[i]
x̂(k0|k0)

= P[isel ]
x̂(k0|k0) ∀ i = 1, . . . ,n (5.80)

and go to step 2.

In the new procedure the available tuning variables are α and M.

5.5 Simulation example

5.5.1 Example 1: Low order toy-model

To illustrate how the selection procedure can be used in practice, two simulation ex-
amples are provided. In the first example we will estimate the state of a simple time
varying model of low order. Later, in the second example model selection will be
used to estimate the temperature distribution of the heated plate example, that was
introduced in chapter 3.

In the first simulation example we will use model selection to estimate states of a
time varying system. Consider the following simple system:

x(k+1) =



θk 0.7
0 0.9

�
x(k)+



1

1.5

�
u(k)+w(k) (5.81)

y(k) = [1 1]x(k)+ v(k). (5.82)

The input signal u(k) is chosen as a random binary signal with a switching probability
of 0.05, the noises w(k) and v(k) were chosen as Gaussian with:

E



w(k)
v(k)

�
= 0 (5.83)

E



w(k)
v(k)

�
[w(k)T v(k)T ] =



Q 0
0 R

�
(5.84)

Q = I (5.85)

R = 10. (5.86)

If the parameter θ (k) is constant, these system equations describe a linear system
for which the standard Kalman filter is the optimal state estimator. In this example
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Figure 5.2 True and estimated parameter θ (k) in the simulation example. The estimates for
θ (k) have been produced using a random walk model and using the model selection procedure
described in Procedure 5.8.

however the parameter θ (k) is chosen to be time varying. The parameter θ (k) jumps
from -0.90 to 0.90 at k = 255 and starting from k = 500, the parameter gradually
returns to its original value, see Figure 5.2. This way, both a sudden jump (fault) and
slowly changing behavior are modelled.

Using this system N = 1000 measurements y(k) are generated. The true states
x(k) and parameters θ (k) are also stored. Afterwards, using only the recorded mea-
surements and inputs, the state of the system is estimated using the procedure based
upon model selection as presented in the previous section.

For the model selection procedure two candidate models of the system are avail-
able. The choice of the candidate models has been chosen to correspond with the
selection scenario described in the introduction. This means that the first available
model is equal to the true model (5.81)-(5.82), but uses constant parameters, i.e.:

θ (k+1) = θ (k). (5.87)

The initial value for the constant parameter is −0.90, which is equal to the true starting
value of θ (k). In the second model the value of the parameter is allowed to vary
according to a random walk, i.e. the model (5.81)-(5.82) augmented by:

θ (k+1) = θ (k)+wθ (k) (5.88)

with wθ (k) chosen as a Gaussian white noise with variance 0.1.
In this example, the optimal model for state estimation will be selected using the

model selection procedure of section 5.4. Two UKF filters are designed using the
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Table 5.1 Mean squared errors of estimated states for a time varying system. States were
estimated using a fixed parameter model, a random walk parameter model, and using model
selection. Results are averaged over 200 simulation runs.

Fixed parameter Flexible par. filter Selection filter
1.1 ·104 15.1 11.8

given models. At time instant k = k0, both filters are initialized with the same estimate
x̃k0|k0

and P̃k0|k0
. From that point on the model selection Procedure 5.8 will be used to

estimate the state of the system, using M = 15 and α = 1.
For illustration purposes, we have also estimated the state vector using only the

fixed parameter model and using only the flexible parameter model.
In order to compare the accuracy of each filter we compute the average estimation

error Eest defined as:

Eest =
1
N

N
k=1

‖x(k)− x̂(k|k)‖2. (5.89)

The results of all the simulations are given in Table 5.1. As expected, the fixed pa-
rameter model alone produces very poor results, due to the bias caused by using an
inaccurate model. The results obtained using the flexible parameter model alone are
much better. The extra degree of freedom in this model allows the filter to correct the
parameter in the measurement update of the filtering procedure. The results using both
models and our new model selection procedure are, as expected, much better than the
results using the fixed model alone and better than the results of using the flexible pa-
rameter model alone. By looking at Figure 5.2, we indeed see that the estimate using
our new procedure is made using the fixed parameter model in the time periods where
the true parameter remains constant, so that there is no extra variance in the estimated
state.

5.5.2 Example 2: Heated plate example

For this second simulation example we consider a more complex process. In this
simulation example we use a slightly modified version of the heated plate model of
section 3.4.1, altering the model in the following ways:

• In section 3.4.1 we assumed that the heat conductivity coefficient λ (see (3.48))
is temperature dependent. As a result the heat conductivity at time k could be
different for different regions of the plate, depending on the temperature of each
region. In this example we assume that at each time instant k the heat conduc-
tivity λ (k) is constant for the entire plate, but this global heat conductivity can
change over time.
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Figure 5.3 Plot of the chosen time-dependent heat conductivity coefficient λ (k) that was used
in the simulation example to generate data.

For this particular example we have chosen a heat conductivity λ (k) that is
piecewise constant. Its exact behavior is depicted in Figure 5.3. Note that a heat
conductivity will never change in such a manner in reality.

• We have added an additive Gaussian process noise w(k) to the system. The
variance matrix Q of the process noise matrix is assumed known: Q = I.

• It is assumed that the temperature of the plate is measured at 5 positions. The
measurement locations are indicated in Figure 5.4. The measurements subject
to a zero mean Gaussian measurement noise v(k). The covariance matrix R of
the measurement noise is assumed known, R = 0.01 · I.

After the modifications the model can be written in the following form:

x(k+1) = f (x(k),u(k),λ (k))+w(k) (5.90)

y(k) = h(x(k))+ v(k). (5.91)

If the time-dependent heat conductivity coefficient is assumed known, the heated
plate model (5.90)-(5.91) reduces to a time varying state-space model of the form
(2.23)-(2.24). As was discussed in chapter 2, for such models the optimal state esti-
mator is the Kalman filter.

In this example however, we will assume that the time dependent heat-transfer
coefficient λ (k) is not known. Instead, the heat-transfer coefficient will be estimated
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Figure 5.4 Realization of the heated plate. At every time instant the temperature is measure at
five locations. These locations are indicated by the numbered squares.

online. To this end we will create two extended models of the form (5.5). Again these
models are chosen as first described in section 5.1: in the first extended model the heat
conductivity coefficient λ (k) is modeled as a constant:

λ (k+1) = λ (k). (5.92)

In the second model we model the heat conductivity coefficient with a random walk:

λ (k+1) = λ (k)+wλ (k), (5.93)

with wλ (k) a zero mean Gaussian white noise with covariance E(wλ (k)wλ (k)T ) =
25).

Using these two models for λ (k) we shall construct three state estimation filters:

1. A filter in which the heat-transfer coefficient is assumed constant at λ (k) = 80.
Using this assumption the plate model (5.90)-(5.91) reduces to a linear model.
As a result, the linear Kalman filter is used to estimate the state of the system.

2. A filter in which the heat-transfer coefficient is modelled as a random walk
as given in (5.93). Using this assumption the filter model is nonlinear. The
Unscented Kalman filter is used to estimate the state of the system.

3. The state of the system is estimated using online filter model selection. Proce-
dure 5.8 is used to determine online which model to determine the best model
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Table 5.2 Averaged mean squared errors (see (5.94)) of estimated states for the time varying
heated plate model. The states in this example represent temperature distribution of the heated
plate. The different filter models used are described in section 5.5.2.

λ (k) constant λ (k) random walk Selection λ (k) assumed known
312.2 130.0 128.5 125.9

for state estimation. The available models are the extended models in which
the heat conductivity coefficient is either assumed fixed (see (5.92) or a ran-
dom walk (5.93). The Unscented Kalman filter is again used to estimate the
state of both candidate models. For the selection procedure we used the tuning
parameters M = 20 and α = 1.5.

For reference we shall also construct a state filter in which λ (k) is known. Since
λ (k) is now a known quantity, the model (5.90)-(5.91) reduces to a time varying linear
state-space model of the form (2.23)-(2.24). Since the model equation are linear, the
state is estimated using the Kalman filter.

To quantify and compare the accuracy of each of the filters, we shall use the fol-
lowing quality measure:

Err =
1
N

N
k=1

‖x(k)− x(k|k)‖2. (5.94)

The accuracy of each of the filters is presented in Table 5.2. In the table we see once
again that the results of the first filter, in which λ (k) was modelled as a constant, are
very poor. This error is caused by the bias due to a erroneous value of λ (k).

The filter using the random walk model (5.93) already performs much better. The
estimation error using this filter is already quite close to the estimation error of the
optimal filter in which λ (k) was known. The additional error of the random walk
model is caused due to the assumed uncertainty in λ (k).

The filter results using the online filter model selection algorithm outline in Proce-
dure 5.8 are a slight improvement over the random walk based model. The reason for
the increase in accuracy is most easily explained by considering the estimated values
for λ (k) as plotted in Figure 5.5. As can be seen in this figure, the model selection
procedure selects results from the fixed parameter model (5.92) when λ (k) is indeed
a constant (thus avoiding the extra variability of the random walk model), but uses the
results of the random walk model when the heat conductivity coefficient jumps to a
new value. As in the previous example we thus see that the selection procedure is able
to combine the advantages of both the available models.
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Figure 5.5 True and estimated values for λ (k). The estimates were obtained using models in
which λ (k) was assumed constant (5.92), λ (k) modelled as a random walk (5.93) and finally
using model selection Procedure 5.8 that had to determine the best alternative from the both
previous models.
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5.6 Summary and conclusions

In many state estimation applications it is assumed that the available process and mea-
surement model perfectly describes the true process. In this chapter we have consid-
ered the possibility that in fact the behavior of the true process might change over
time, in particular we assume that the process parameters might change over time. If
model parameters could change over time, they would have to be estimated together
with the state of the system. Estimating states and parameters simultaneously leads
to a increase of the variance of the estimated states. As we have shown in this chap-
ter, the additional variance can be avoided by using accurate model selection criteria
which automatically determine using the available input-output data when the model
parameters need to be re-estimated.

For this purpose a new model selection criterium has been introduced in section
5.2. The model selection criterium has been constructed by extending the existing
model selection criteria used in System Identification literature.

For the case where the available models are linear, an analysis of the statistical
properties of the new model selection algorithm has been presented in section 5.3.

Section 5.4 has introduced two tuning parameters in the selection algorithm that
can be used to improve the behavior of the selection algorithm.

Finally, the effectiveness of the new selection procedure has been demonstrated in
section 5.5. In this section the model selection procedure is used to obtain improved
state estimates in both a toy example and for the heated plate model introduced earlier.
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5.A Proof of Proposition 5.1

Define W (x,k) as:
W (x,k) =V (x,k)+‖x−x(k)#‖2

P−1 , (5.A.1)

then
x̂(k) = argmin

x
W (x,k). (5.A.2)

Define also W (x,k) as:
W (x,k) =V (x,k)+‖x−x(k)#‖2

P−1 . (5.A.3)

In order to prove the proposition, let us first expand V (x̂(k),k) around x∗(k) = argminxV (x,k):

V (x̂(k),k) = V (x∗(k),k)+
1
2
(x̂(k)−x∗(k))TV

′′(ζk,k)(x̂(k)−x∗(k)). (5.A.4)

In the equation above, the symbol ′ means taking the partial derivative with respect to x. Simi-
larly since W ′(x̂(k),k) = 0:

W (x∗(k),k) = W (x̂(k),k)+
1
2
(x̂(k)−x∗(k))W ′′(ζ k,k)(x̂(k)−x∗(k)), (5.A.5)

which is easily rewritten into:

W (x̂(k),k) = W (x∗(k),k)− 1
2
(x̂(k)−x∗(k))W ′′(ζ k,k)(x̂(k)−x∗(k)). (5.A.6)

The second derivative of W (x,k) is:

W ′′(x,k) = V ′′(x,k)+2P−1. (5.A.7)

Inserting (5.A.3) and (5.A.7) into (5.A.6) and using the assumption that x#k = x∗(k), we obtain:

V (x̂(k),k) = V (x∗(k),k)− 1
2
(x̂(k)−x∗(k))(V ′′(ζ k,k)+4P−1)(x̂(k)−x∗(k))

Take the expectations of (5.A.4) and (5.A.8) and use the following asymptotical relations:

Ex̂(k)(x̂(k)−x∗(k))(V ′′(ζk,k))(x̂(k)−x∗(k))

= Ex̂(k) tr
�
V
′′(ζk,k)(x̂(k)−x∗(k))(x̂(k)−x∗(k))T

�
≈ tr V

′′(x∗(k),k)Px (5.A.8)

in which Px is the asymptotic covariance matrix of x̂(k). Also,

Ex̂(k)(x̂(k)−x∗(k))(V ′′(ζ k,k))(x̂(k)−x∗(k)) ≈ trV
′′(x∗(k),k)Px (5.A.9)

and V (x∗,k) ≈ V (x∗,k). (5.A.10)

Using the last three relations together with (5.A.4) and (5.A.8) gives:

Ex̂(k)V (x̂(k),k) ≈ V (x∗(k),k)+
1
2
trV

′′(x∗(k),k)Px

Ex̂(k)V (x̂(k),k) ≈ V (x∗(k),k)− 1
2
tr(V ′′(x∗(k),k)+4P−1)Px.
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Combining the two last expressions yields:

Ex̂(k)V (x̂(k),k) ≈ Ex̂(k)V (x̂(k),k)+ tr(V ′′(x∗(k),k)+2P−1)Px. (5.A.11)

Using the theory of chapter 9, pages 281-282 in [56], it can be shown that the covariance matrix
Px equals:

Px = 4
�
W

′′(x∗(k),k)
�−1 �

ψT RLRT ψ
� 

W (x∗(k),k)
!−1

= 4
�
V
′′(x∗(k),k)+2P−1

�−1 �
ψT RLRT ψ

��
V
′′(x∗(k),k)+2P−1

�−1
(5.A.12)

with ψ and L as defined in the statement of the theorem. To derive this last expression, we have
used the assumption that y(k)− ŷ(x∗(k)) is approximately a white noise and that W

′′(x∗(k),k)
exists and is regular.

If we take result (5.A.11) (after replacing Ex̂(k)V (x̂(k)) with V (x̂(k)), the only observation
we have of it) and combine it with (5.A.12), we obtain the expression (5.28).

5.B Proof of Proposition 5.5

Proof By (5.27), we have:

V (x̂(k|k),k) = ‖y(k)−C[m] x̂(k|k)‖2
R[m]−1 . (5.B.13)

Using (5.11) this becomes:

V (x̂(k|k),k) = ‖Cx(k)+v(k)−C[m] x̂(k|k)‖2
R[m]−1 . (5.B.14)

Since the Kalman filter was used to determine x̂(k|k), we can write according to (2.34):

x̂(k|k) = x̂(k|k−1)+K[m](y(k)−C[m]x̂(k|k−1)). (5.B.15)

Now, using (2.28) and denoting by ε = x(k− 1)− x̂(k− 1|k− 1) the estimation error at time
k−1, we have that:

x(k)− x̂(k|k−1) = (A−A[m])x(k−1)+(B−B[m])u(k−1)

+w(k−1)−A[m]ε. (5.B.16)

Using these last two equations and (2.28), we can rewrite (5.B.14) as follows:

V (x̂(k|k),k) =
"""(I−C[m]K[m])(C−C[m])(Ax(k−1)+Bu(k−1))

+C[m](I−K[m]C[m])
'
(A−A[m])x(k−1)+(B−B[m])u(k−1)

(
+(I−C[m]K[m])Cw(k−1)− (I−K[m]C[m])A[m]ε

+ (I−C[m]K[m])v(k)
"""2

R[m]−1
. (5.B.17)
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In this last equation, the first three terms are all deterministic quantities, while the last three
terms are all stochastic variables. Using the definition (5.47) of γ , the deterministic terms can
be lumped together:

V (x̂(k|k),k) = ‖γ +(I−C[m]K[m])Cw(k−1)

−C[m](I−K[m]C[m])A[m]ε +(I−C[m]K[m])v(k)‖2
R[m]−1 . (5.B.18)

The last three terms describe how the three noise terms v(k),w(k − 1) and ε influence the
achieved fit of the model. Note that, since x̂(k− 1|k− 1) has been determined using an ex-
act model, ε is a white noise with covariance Pk−1|k−1 and is not correlated with w(k−1) and
v(k). Therefore, the stochastic terms in the last equation can be rewritten as:

(I −C[m]K[m])Cw(k − 1)−C[m](I −K[m]C[m])A[m]ε + (I −C[m]K[m])v(k) = Ψe, (5.B.19)

with Ψ defined as in (5.46) and e a zero mean Gaussian noise vector which has a covariance
I and which is independent of the choice of the model M = (A[m],B[m],C[m],Q[m],R[m]). The
dimension of the vector e is the sum of the lengths of the vectors v(k),w(k) and ε . Substituting
this last result in (5.B.18), gives equations (5.44)-(5.45).

5.C Proof of Proposition 5.6

5.C.1 Outline of proof

The proof for proposition 5.6 presented here consists of two steps: first we will present two
lemmas in which the expectation and variance of expressions of the form: eTWe, with e ∈
R

ne×ne a normally distributed vector with e ∼ N(0,σ2I) and W ∈ R
ne×ne an arbitrary fixed

matrix. Then, using the derived properties we shall move to the proof of proposition 5.6.

Lemma 5.9 Suppose e ∈ R
ne×ne is a Gaussian distributed vector with e ∼ N(0,σ2I) and W ∈

R
ne×ne is an arbitrary fixed matrix. Then it holds that:

EeTWe = σ2trace(W ) (5.C.20)

var(eTWe) = σ4trace(W (W +WT )). (5.C.21)

Proof The expected value of eTWe in (5.C.20) can be easily computed. Since eTWe is a scalar,
it holds that:

EeTWe = trace(EeTWe). (5.C.22)

Using the property of the trace operator that trace(AB) = trace(BA) we easily obtain:

trace(EeTWe) = trace(EeeTW ) = σ2trace(W ), (5.C.23)

which proves (5.C.20). The variance expression is somewhat harder to prove. We start the proof
of the variance expression by writing:

var(eTWe) = E

'
eTWe−E{eTWe}

(2
(5.C.24)

= E

'
eTWeeTWe−2eTWeE{eTWe}+[E{eTWe}]2

(
(5.C.25)

= E

'
eTWeeTWe

(
−σ4 (trace(W ))2 . (5.C.26)
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Consider the first term on the right hand side of (5.C.26). If we denote the element of W on row
i and column j as [W ]i j and the i-th row of e as ei we can write:

E

'
eTWeeTWe

(
=


i, j,k,l

E[W ]i j[W ]kleie jekel . (5.C.27)

In which all the summation variables i, j,k, l range from 1 to ne. Because e ∼ N(0,σ2I) the
terms of this summation are only non-zero in the following four cases:

1. If i = j, k = l, but i �= k. For this particular case we have:
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2. If i = k, j = l, but i �= j. For this particular case we have:
i=k, j=l,i�= j

E[W ]i j[W ]kleie jekel =

i�= j

E[W ]i j[W ]i jeieie je j

= σ4

i�= j

[W ]i j[W ]i j

= σ4

i, j

[W ]i j[W ]i j −σ4

i= j

[W ]i j[W ]i j

= σ4

i, j

[W ]i j[W ]i j −σ4


i

[W ]i j[W ]i j. (5.C.29)

3. If i = l, j = k, but i �= j. For this particular case we have:
i=l, j=k,i�= j
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4. If i = j = k = l. For this last situation it holds that:
i= j=k=l

E[W ]i j[W ]kleie jekel =


i

E[W ]ii[W ]iieieieiei

= 3σ4


i

[W ]ii[W ]ii. (5.C.31)
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Returning to (5.C.27) we thus have that (5.C.27) = (5.C.28) + (5.C.29) + (5.C.30) + (5.C.31):

E(eTWeeTWe) = σ4
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(
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where in the last step we used that

trace(WW ) �


i

[WW ]ii =


i j

[W ]i j[W ] ji, (5.C.33)

which can be easily deduced from

[WW ]ii =


j

[W ]i j[W ] ji, (5.C.34)

Finally substituting (5.C.32) in (5.C.26) results in

var(eTWe) = σ4trace(W (W +WT )). (5.C.35)

5.C.2 Main proof

Using the results derived in Lemma 5.9, we now prove Proposition 5.6

Proof
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using Q as defined in (5.51). Of the three terms of the right hand side of the last expression, the
first is a constant, the second has expectation zero and the expectation of the last term can be
easily computed using Lemma 5.9. As a result we thus indeed have that:
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To prove the variance result we first write:
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Using (5.48) and (5.67) this becomes:
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In this last equation we see that the first term is of the form eTWe. This means that this expecta-
tion is easily computed using (5.C.20). The second term in the last equation is equivalent to the
variance of eT Qe. This term is easily computed using (5.C.21). After substituting the results
from Lemma 5.9, we indeed have:
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Chapter 6

Case study: Dryer section of
paper production machine

6.1 Introduction

In this chapter the theory of the preceding chapters will be illustrated using a simula-
tion case study. In this case study we will attempt to monitor the states of the dryer
section of a paper mill.

Before continuing with a detailed description of the dryer section of a paper ma-
chine, we will first discuss the paper making process in general. Then we will focus
on the role of the dryer section in this process.

Most current industrial paper mills are based on the Fourdrinier machine invented
in 1798 by Nicolas Louis Robert. A Fourdrinier machine performs all tasks required
to transform wood pulp (the source product) into paper. Like the original Fourdrinier
machine, current paper machines consist of four main sections: the wet section, the
press section, the dryer section and the calender section.

In the wet section of a paper machine water and wood pulp are combined with
other source materials such as sizing, fillers, colors, and possibly waste paper called
broke. The source materials are converted to fibers and passed on to the refiner where
the fibres are subjected to brushing and rubbing. After brushing and rubbing the fibre
mixture then enters the headbox that loads the pulp onto a moving wire conveyor.
Suction boxes below the wire gently remove water from the pulp with a slight vacuum.
The pulp mixture on the conveyor belt that leaves the wet-section on average contains
over 90% water.

The next section is the press section. The main purpose of the press section is to
mechanically remove water from the paper using sets of rolling presses. A secondary
effect of pressing the paper is that it smoothes the surface of the paper. After the press
section approximately 50% of the mass of the paper mixture on the conveyor consists
of water.

After the press section the paper enters the dryer section. The goal of the dryer
section is to lower the water content of the paper mixture on the conveyor to approxi-
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132 6 Case study: Dryer section of paper production machine

mately 5% - 10%. In the dryer section the water fraction is lowered by vaporizing the
water from the paper. For this purpose the paper web on the conveyor belt is heated by
steam heated cylinders. During the drying process additional agents are often sprayed
on the paper to influence the paper properties.

The final section of a paper machine is the calender section. In the calender section
the dried paper is wound up on big reels. Wax, starch or other products may be added
to the paper in the calender section to obtain the desired finish for the final product.

The dryer section of a paper machine is by far the most energy consuming section
of a paper machine. As a result it is a natural target for process optimization. As
discussed earlier, this requires that we develop an effective monitoring tool for the
dryer section.

To develop a monitoring tool, we will use a first principles model of the dryer
section. Different models for a dryer section can be found in the literature, see for
instance [10][27][48]. Here, we will use a detailed first principles model developed
by TNO Science and Industry [50].

This chapter is organized as follows. First, in Section 6.2 we will discuss the
available nonlinear process model for a dryer section and present its main equations.
Section 6.3 demonstrates the use of model reduction techniques to reduce the order
of the available dryer model. Since model reduction does not decrease the CPU time
required per simulation, in section 6.4 an approximate reduced order dryer model
will be derived that allows us to speed up simulations, while retaining the physical
interpretation of the states. Section 6.5 illustrates how we can use measured data
to construct an approximate Kalman filter for a linearized dryer model even when
no covariance information is available. In section 6.6 we use the nonlinear model
to estimate the state of the dryer section. Once a good state filter has been derived,
section 6.7 applies the model selection techniques of chapter 5 to determine online if
it is necessary to adjust model parameters. The chapter ends with some conclusions
and discussions of the obtained results.

6.2 Modelling of a dryer section

6.2.1 Dryer section description

Before presenting the available dryer section model that will be used in the case study,
first the modelled dryer section setup will be discussed. This particular setup was
supplied by TNO Science and Industry. The supplied setup is similar to actual dryer
configurations used in industrial practice.

In the considered dryer section approximately 55% of the mass that comprises the
paper web is water. To remove the water content, the considered dryer section has
54 drying cylinders available. After the 32nd cylinder the modelled setup contains a
coater unit which sprays water mixed with coating materials to improve the properties
of the produced paper. After passing the coater unit, the paper web is again dried such
that the paper web leaving the dryer contains less than 10% water.

In this chapter we will refer to the first 32 cylinders in this particular dryer setup as
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the pre-dryer section (or PDR section), the 22 cylinder after the coater will be referred
to as the after-dryer section (or ADR section).

All cylinders in the dryer section are heated by pressurized and saturated steam
passing through the interior of the (hollow) cylinders. The pressure (and thus the
temperature) of the saturated steam can be controlled by an operator. The pressure of
the steam entering the cylinders cannot be controlled per individual cylinder. Instead
cylinders are divided into six groups. The pressure of the steam heating the cylinders
is the same for all cylinders within a cylinder group. The steam pressure for each of
the six cylinder groups, however, can be controlled by an operator.

Apart from the pressure for each of the 6 cylinder groups, the operator can also
control the speed of the paper web and the amount of coating materials sprayed onto
the web at the coater unit.

The main monitoring objective in a paper machine is to obtain an accurate estimate
of the dryness of the paper at the entrance of the dryer section. The dryness of the
paper entering the dryer section is of critical importance because it determines the
maximum stress the paper can endure before breaking. If the paper web is too wet
when entering the dryer section, the web will break. If the web breaks, production
needs to be halted, to allow operators to clean up the broken web. When the paper
web at the entrance of the dryer section is relatively dry, it may be possible to operate
the dryer section at a higher velocity. Unfortunately the dryness of the paper at the
entrance of the dryer section cannot be easily measured directly. In fact, in the studied
plant the dryness of the paper is only measured after the 32nd and 54th cylinder pairs.

Another important quantity to be monitored is the efficiency of the heat transfer
between the dryer cylinders and the paper web for both the PDR and ADR sections
of the dryer. The heat transfer between the paper web on the conveyor and a dryer
cylinder can decrease as a result of dirt accumulating on the dryer cylinder. Once
the heat transfer between a cylinder and the paper web becomes unacceptably low, a
cylinder needs to be cleaned. The efficiency of the heat transfer between the paper
web and the dryer cylinders can be expressed quantitatively using correction factors
on the theoretical heat transfer between the dryer cylinders and the paper web.

In order to monitor the dryer section, two measurements are available at each sam-
pling instant. These measurements consist of paper dryness measurements between
the 32nd cylinder and the coater unit (just after the PDR section of the dryer) and after
the final dryer cylinder of the dryer. The dryness measurements are available every 60
seconds.

6.2.2 Model layout

In this section we will discuss the available model of the dryer section. This model
consists of three parts. Before discussing each part of the model in detail we will first
present a brief overview of the available sub-models:

1. TNO Dryer model as described in [50]. This dryer model - by far the most com-
plex and detailed part of the total model - has been provided by TNO Science
and Industry. This model describes virtually all aspects of the dryer section:
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(a) Heat transfer between steam and cylinders,

(b) Heat and mass (water in liquid and vapour form) transfer within the paper
web,

(c) Heat and mass transfer from the paper web to its surroundings (air, cylin-
ders, felts),

(d) Shrinking of the paper as it becomes dryer,

(e) Coater unit.

Unfortunately the TNO Dryer model was developed under the assumption that
the dryer is in steady state. As a result the gradual heating of the dryer cylinders
is ignored.

2. Cylinder model. To obtain a model under dynamical process conditions, the
gradual heating and cooling of the individual dryer cylinders has also been mod-
elled.

3. The model for the behavior of the input dryness and heat transfer correction
factors for the PDR and ADR sections.

In the remainder of this section we will discuss the various submodels in more
detail.

6.2.3 TNO Dryer model

In the first part of the dryer model the properties of the paper web are modelled as
it travels through the dryer section. This part of the model can be used to compute
both the dry-mass fraction of the paper as well as the paper temperature at each point
within the dryer section. The level of detail in this part of the model is such that it is
even possible to compute temperature and dryness profiles for the interior of the paper
web. An example of a temperature and dryness profile as computed by this part of the
model is presented in Figure 6.1. In this figure we can easily identify the increase in
paper web temperature at the top and at the bottom of the paper web when it comes
into contact with a dryer cylinder. In the dryness profile we can see how the dry-
mass fraction gradually increases until the paper reaches the coater unit. The coater
unit increases the water fraction by spraying water and chemicals on the paper web to
enhance the final paper properties. After the coater unit, the dryness of the paper web
again gradually increases until it reaches a dryness of approximately 90% at the end
of the dryer section.

The TNO Dryer model is described in detail in [50]. The dryer model consists of
four main mass and energy balances. These balances and their main equations are:

1. External mass transport balance. This mass balance describes the transport of
water vapor from the surface of the paper to the surrounding air. The driving
forces behind the evaporation process are the internal pressures of the water
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Figure 6.1 Example of a temperature and dryness profile for the cross-section of the paper web
as a function of the position inside the dryer section. This profile was computed using the TNO
Dryer model.
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vapor within the paper. The evaporation process can be modelled using Stefan’s
law:

Jw,ext =
kMvPtot

RTavg
ln

,
Ptot −Pv,a

Ptot −Pv,p

-
. (6.1)

In this equation Jw,ext is the mass flux of water, k is the mass-transfer coefficient,
Mv is the molecular mass of the water vapor, Tavg is the average temperature over
the paper-air interface, Pv,a, Pv,i are the partial pressures of the water vapor and
the air and Ptot is the total pressure.

2. Internal mass transport balance. This mass balance describes the transport of
water within the paper. This mass balance consists of two parts that model
water in its liquid and vapor phases respectively. The transport of liquid water
is modelled using Darcy’s law, the transport of vapor is described using Fick’s
equation. According to Darcy’s law for the flow of liquids it should hold that
the total transport of liquid water Jl,int the z direction (perpendicular to the plane
of the paper) is

Jl,int =
k
µ

∂Ph

∂ z
(6.2)

with k the permeability of the paper, A the capillary surface, µ the viscosity of
the water and Ph the hydrostatic pressure of the water.

According to Fick’s law the vapor transport Jv,int is equal to

Jv,int =
DMv

RT
Ptot

Ptot −Pv

∂Pv

∂ z
, (6.3)

with D the effective diffusion coefficient.

3. External heat transfer. This energy balance describes heat exchange between
the paper web and either the surrounding air or a cylinder wall depending on
the position of the paper web. The main equation that describes the external
energy flux qext is

qext = α(Tpaper −Tair)+ Jv,exthv, (6.4)

in which α is a heat-transfer coefficient and hv is the enthalpy of the vapor
leaving the paper.

4. Internal heat transfer. This final equation describes the heat transfer within the
paper. The heat flux within the web consists of three parts. The first two parts
are caused by the movement of the water in either liquid of vapor form. The
final part consists of heat conduction. Combined, this leads to the equation

qint = Jl,inthl + Jv,inthv + λpaper
∂Tpaper

∂ z
, (6.5)

with Jl,int , Jv,int as modelled in (6.2) and (6.3), hl , hv the enthalpy of the wa-
ter inside the paper, λpaper the heat conductivity of the paper and Tpaper the
temperature of the paper.
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Combining these equations leads to a coupled set of PDEs that provides a complete
description of the paper web. The boundary conditions for these PDEs are dependent
on the machine configuration. The combined set of PDEs and boundary equations are
solved numerically by applying a finite difference technique.

Even though the solution to the PDEs describes the complete paper web at all
points of the machine, we will only use a part of the solution of the TNO Dryer model.
Specifically we will only use the TNO Dryer model to compute all the paper dryness
just before the coater and at the end of the dryer section, the average temperature of the
paper web that is in contact with the various cylinders and all heat transfer coefficients
between the cylinder surface and the paper for each dryer cylinder:

[dout(t),dR(t),Tpap,1...,54,αc→p,1,...54,αc→p,1,...54,αc→p,1,...54] =
fTNO(Tcil,1,...54,din(t),cPDR(t),cADR,cADR(t)). (6.6)

For the meaning of each variable in this function the reader is referred to Table 6.1.
The TNO Dryer model has been implemented in ‘C’ by TNO Science and Industry.

As already mentioned, in order to use the TNO Dryer model the user has to provide
the several inputs to the model, i.e. the average temperature of each dryer cylinder, the
dryness of the paper at the start of the dryer section as well as both correction factors
for the heat transfer in the PDR and ADR sections of the dryer.

6.2.4 Cylinder model

In this part of the dryer model the temperature evolution of each of the dryer cylinders
is described.

Each dryer cylinder gains thermal energy by steam that passes through the hollow
interior of the cylinder. At the same time a cylinder looses thermal energy to the paper
web and to the surrounding air. The temperature evolution of a dryer cylinder can be
approximately modelled using a simplified energy balance [2]. For a cylinder in the
PDR section of the dryer section the resulting differential equation is:

mcilcp

cPDR

∂Tcil,i(t)
∂ t

= Ac→pα i
c→p(t)[Tcil,i(t)−Tpap,i(t)]+

Ac→sαc→s(t)[Tcil,i(t)−Tsteam,i(t)]+Ac→aαc→a(t)[Tcil,i(t)−Tair(t)]. (6.7)

For a cylinder in the ADR section cPDR would be replaced by cADR. The meaning of
all variables in this expression can be found in Table 6.1.

To derive the previous energy balance two approximating assumptions were made.
Firstly, it has been assumed that the temperature of each cylinder is uniform. This as-
sumption can be justified since the cylinders consist of iron, which has a very good
heat conductivity. Secondly the temperatures of both the air and the paper web touch-
ing the cylinders are assumed constant. This is not a crucial assumption, since we are
only interested in the total heat transfer from a dryer cylinder to its surroundings.

For our model for the cylinder temperature, we require the average heat transfer
coefficients from the cylinder to its surroundings. These heat transfer coefficients are
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Table 6.1 Symbols of the dryer model, their meaning and units.

Symbol Unit Explanation
αc→a

W
m2◦C heat transfer coefficient between i-th dryer and air

αc→p,i
W

m2◦C heat transfer coefficient between i-th dryer and paper
αc→s,i

W
m2◦C heat transfer coefficient between i-th dryer and steam

cADR [1] correction factor for heat transfer in after dryer section
(final 22 cylinders)

cPDR [1] correction factor for heat transfer in the pre dryer section
(first 32 cylinders)

γ J
kg◦C specific heat of the cylinder

din [1] mass fraction dry paper in the paper mixture entering the
dryer section (din = mpap/(mpap +mwater))

dout [1] measured mass fraction of dry paper measured after the
pre- and after-dryer sections

g gr/m2 average weight of mass entering dryer per m2

mcil kg mass of a dryer cylinder
vpap m/s speed at which the paper web moves through the dryer section
Ac→a m2 contact surface between a dryer cylinder and surrounding air
Ac→p m2 contact surface between a dryer cylinder and the paper web
Ac→s m2 contact surface between a dryer cylinder and steam

heating the cylinder
Psteam,i bar pressure of saturated steam that heats the cylinders

in the i-th cylinder group
Tair

◦C temperature of air surrounding the dryer section
Tcil,i

◦C temperature of the i-th dryer cylinder
Tpap,i

◦C temperature of paper surface at the i-th cylinder
Tsteam,i

◦C temperature of steam inside the i-th cylinder
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not trivial to compute as they may depend on the dryness of the paper at the cylinder
and the average temperature of the paper in contact which the cylinder. Fortunately
the TNO Dryer model can be used to compute the various heat conductivities and the
average paper temperatures of paper at the contact surface at every cylinder, see (6.6).

6.2.5 Model for input dryness and correction factors

From equations (6.6) and (6.7) we see that both the TNO dryer model and the cylinder
model are dependent on the input dryness d in(k) and on the correction factors for the
PDR and ADR sections of the dryer, respectively.

Both the input dryness and the correction factors are empirically modelled (in
discrete time) as first order autoregressive model processes that fluctuate around a
given mean value. For example, the behavior of the dryness of the paper at the entrance
of the dryer section is assumed to correspond to the following first order autoregressive
process:

din(k+1)−din = adin(din(k)−din)+wdin(k), (6.8)

with din the average dryness of the paper at the entrance of the dryer section, the
adin the autoregressive parameter of the process and wdin(k) a zero mean Gaussian
distributed white noise sequence. For the simulation examples the autoregressive pa-
rameter adin , the average input dryness din and the variance of wdin(k) are assumed
known. The values for these parameters can be found in Table 6.2. In the table, the
variance of wdin(k) is denoted as Qwdin

.

As mentioned before, the behavior of the correction factors c PDR(k) and cADR are
also assumed to correspond to first order autoregressive processes:

cPDR(k+1)− cPDR = acPDR(cPDR(k)− cPDR)+wcPDR(k) (6.9)

cADR(k+1)− cADR = acADR(cADR(k)− cADR)+wcADR(k), (6.10)

with cPDR, cADR the average values for the correction factors, acPDR , acADR the autore-
gressive parameters of the processes and wcPDR(k), wcADR(k) zero mean Gaussian white
noise processes with variances QwcPDR

and QwcADR
. As was the case for the input dry-

ness behavior, we assume that all parameters in each of the autoregressive processes
are known. All values used in the simulation experiments are given in Table 6.2.

6.2.6 The combined discrete time process model

The various sub-models of the dryer section can be combined to form a complete
dynamic model for the entire dryer section. The simulation of this complete model
requires that we numerically resolve the set of equations (6.6)-(6.10). For this purpose
we have used the fourth order Runge-Kutta method [76] using integration steps of 15
seconds.

Since the actual sampling time of the paper dryness measurements is 60 seconds,
the discrete time model for the dryer section can be obtained by using every fourth
Runge-Kutta numerical integration result.
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Table 6.2 Parameter values for the autoregressive models of input dryness din and both correc-
tion factors cPDR and cADR (see (6.8)-(6.10)).

Parameter Value
adin 0.96
acPDR 0.999
acADR 0.9995
din 0.48

cPDR 5.88
cADR 0.73
Qwdin

1,764 ·10−5

QwcPDR
2.5594 ·10−5

QwcADR
5.1174 ·10−3

The obtained process model for the dryer section can be written in the form of a
discrete time nonlinear state equation:

x(k+1) = f (x(k),u(k))+w(k) (6.11)

with

x(k) = [Tcyl,1(k), . . . ,Tcyl,54(k),din(k),cPDR(k),cADR(k)]T (6.12)

u(k) = [Tsteam,1(k), . . . ,Tsteam,6(k),vpap(k),g(k),coater(k)]T (6.13)

w(k) = [wTcyl,1(k), . . . ,wTcyl,54(k),wdin(k),wcPDR (k),wcADR (k)]T , (6.14)

with w(k) an additive Gaussian white noise process with mean zero and covariance Q
specified by:

Q = E(w(k)w(k)T ) = diag(0.12, . . . ,0.12,Qdin ,QcPDR ,QcADR). (6.15)

In equation (6.11) an additive white noise term w(k) has been added. This additive
white noise has been introduced to allow for irreproducible effects that lead to slight
variations in cylinder temperature. Moreover, this additive noise will later allow a
state filter designed using this model to compensate for minor modelling inaccuracies
(see also section 2.3.4).

An important remark for the sequel is that the CPU time required to compute
the state update of the combined dryer model is approximately 48 seconds on an
1400MHz AMD Athlon based computer. Note that the required CPU time per model
evaluation is of the same order as the sampling interval of 60 seconds.

6.2.7 Measurement model

Besides a model for the state dynamics, we also require a model for the measurements,
i.e. the measured dry-mass fraction of the paper web measured just before the coater
and just after the final dryer cylinder, where the paper leaves the dryer section.



6.2 Modelling of a dryer section 141

The measurement model is easily obtained, since the existing TNO Dryer model
(see 6.6) can be used to compute the dry-mass fraction at all possible positions in the
dryer section. So by rewriting the TNO Dryer model, we can construct a measurement
equation of the form:

y(k) = h(x(k),u(k))+ v(k), (6.16)

with y(k) = [dout(k) dcoater(k)]T , x(k) and u(k) defined as before, h(·) the nonlinear
measurement equation derived form (6.6). The term v(k) is an additive Gaussian white
noise which has been added to the measurement model to describe the measurement
errors. The dry-mass fraction sensors used in practice have a standard deviation of
approximately 25 ·10−3. The covariance matrix of the measurement errors is chosen
accordingly:

R = E{v(k)v(k)T } = diag(6.25 ·10−4,6.25 ·10−4). (6.17)

The measurement errors v(k) and the process disturbances w(k) are assumed to be
independent.

6.2.8 Summary of dryer model properties

In this section we have discussed the model that will be used in order to test the
properties of the methodologies discussed in previous chapters. In this section we
will summarize the properties of the dryer model and verify to which extent the dryer
model corresponds to the type of nonlinear process models that we considered in the
problem statement in the beginning of this thesis (see section 1.3).

In the problem statement of this thesis we focussed on nonlinear large scale first
principles models of complex processes in the process industry. We assumed that
the CPU time per model evaluation of the model is at least of the same order as the
sampling time of the data. Finally, we assumed that in these models the properties of
noise disturbances acting on states and measurements may be unknownand the models
may need to be recalibrated during operation due to changing process conditions.

The dryer model has 57 states. This is relatively low compared to finite difference
models such as the heated plate model we used earlier in this thesis. The fact that the
dryer model is of relatively low order will prevent an effective demonstration of the
capacity of model reduction techniques.

The simulation time of the dryer model is 48 seconds, while the measurements are
sampled every 60 seconds. The CPU time per model evaluation is thus of the same
order as the sampling time per measurement. As a result the dryer section case can be
used to show the usefulness of the methodologies introduced in chapter 3 to speed up
model computations.

In this case study we will only use simulated data. As a result the properties of
process disturbances and measurement errors are exactly known. However we can
still use the dryer model to test the techniques introduced in chapter 4 to construct a
Kalman filter without covariance information.
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Finally, the dryer model currently does not contain any parameters that may need
to be re-estimated online. In order to test the model selection techniques as introduced
in chapter 5, we will extend the model with additional parameters, which we can easily
change over time.

6.3 Model reduction

The total dryer model has 57 states. The first 54 states represent the temperature of
each dryer cylinder, the remaining three states are the input dryness and the two cor-
rection factors (see (6.8)-(6.10)). In this section we will use the POD model reduction
technique described in section 2.4.2 to reduce the order of this model.

The reduction of the model is not motivated by a very high state dimension of the
original model. A model order of 57 is indeed not that high. However if it is possible
to obtain a reduced order model that has a significantly lower state dimension, this
will reduce the computational load when constructing a state filter or when deriving
approximative models.

For the POD model reduction we will only reduce the number of states that rep-
resent the cylinder temperatures. The reason for only using POD model reduction on
this part of the state vector is that the POD model reduction technique is sensitive to
the scaling of the state vector. The POD method only retains those directions of the
state-space which exhibit the most variability (see section 2.4.2). In the case of the
dryer model, the variation in the input dryness and in both correction factors will gen-
erally be much smaller than the variation of the cylinder temperatures. This means
that the states in which we were most interested, would likely be removed by model
reduction. This problem is easily circumvented by only considering the first 54 states
(cylinder temperatures) for model reduction.

To reduce the number of cylinder temperature states we need to construct a snap-
shot matrix Xsnap as defined in (2.94). For this purpose we construct a simulation run
of 16500 samples with the complete dryer model (6.11).

The input sequence u(k) used to generate this sequence should be representative
of input data that would be encountered in practice. Unfortunately, we only have a
sequence of 300 inputs available from an actual industrial production run. Conse-
quently, a procedure is needed to extend the input sequence of 300 measured inputs
to a sequence of 16500 inputs. For the dryer case, the following procedure has been
used:

Procedure 6.1 In order to extend the available sequence on 300 inputs u(k) to a se-
quence of arbitrary length, the following procedure has been used:

1. For each component of the input vector u(k), examine the available sequence of
300 inputs.

2. Identify for each input component a time series model of the input sequence us-
ing ARMA models or step-functions. For ARMA models the model order and the
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Figure 6.2 Measured and generated data of the temperature of the steam flowing to the first
cylinder group, Tsteam,1(k). The properties of the generated data (mean, variability, autocorre-
lation) are similar.

parameter values can be determined using the ARMASA estimation procedure
[17].

3. Generate new input data per component using the models obtained in the pre-
vious step.

This procedure has the advantage that the simulated data have the same properties
(mean, covariance function), as the original data. Examples of measured data and data
generated using the described procedure can be found in Figures 6.2 and 6.3. Figure
6.2 shows the available temperature data for the steam supplied to the first cylinder
group, Figure 6.3 shows measured and generated data for the mass of dry material
entering the dryer section.

As opposed to the other inputs, which are modelled using ARMA processes, the
machine speed vpap(k) has been modelled using a series of step functions. Step func-
tions were chosen because the original data also consisted of a series of steps.

Using the simulated inputs, the full order simulation model (6.11) is used to gen-
erate 16500 states x(1), . . . ,x(16500). These states can then be used to determine the
POD basis using the method of snapshots previously described in section 2.4.2.

After subtracting the mean values of the states generated using the simulated in-
puts, the snapshot matrix Xsnap is constructed:

Xsnap =
�

x(1)− x · · · x(16500)− x
�
, (6.18)
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Figure 6.3 Measured and generated data of the average weight per square meter entering the
dryer section, gk(k). The properties of the generated data (mean, variability, autocorrelation)
are similar.

in which x is the mean of the simulated states:

x =
1
N

16500
k=1

x(k). (6.19)

To compute the POD basis for the simulation data we compute the singular value
decomposition of the snapshot matrix Xsnap. The decreasing singular values
σ1, . . . ,σ54 of the snapshot matrix are depicted in Figure 6.4. In this figure we see
that the computed singular values quickly decrease until k = 20. From approximately
k = 25 the singular values have decreased at least two orders of magnitude compared to
first singular value σ1. This leads us to reduce the number of temperature states from
54 to 25 by projecting the cylinder temperatures onto the first 25 vectors corresponding
to the 25 largest singular values of Xsnap.

Since we are not reducing the complete state vector, but only the cylinder temper-
ature states, we have to employ a slightly modified version of the Galerkin projection
technique to obtain the reduced order model. Denoting T as a R

54×25 matrix whose
columns consist of the singular vectors corresponding to the 25 largest singular values
of Xsnap, the reduced order state model is given by:

xred(k+1) = fred(xred(k),u(k),w(k)) (6.20)

= PT f (Pxred(k),u(k),w(k)), (6.21)

with f (·) the original full order state model and P∈R
54×28 a projection matrix defined
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Figure 6.4 Singular values obtained by computing the Singular Value Decomposition of the
snapshot matrix for the dryer section. The singular values for k > 25 have decreased approxi-
mately 2 orders of magnitude compared to the first singular value.

as:

P =



T 0
0 I

�
. (6.22)

The reduced order measurement equation for the dryer model can be constructed sim-
ilarly:

y(k) = hred(xred(k),u(k),v(k)) (6.23)

= h(Pxred,u(k),v(k)), (6.24)

with P defined as in (6.22).
To verify that the reduced order model obtained by the POD procedure described

above is an accurate approximation of the original full order model, the step responses
of computed output dryness of the reduced order model have been compared to the
step responses of the original model. As an example, Figure 6.5 depicts the step
response of both original and reduced order model to a step in the steam temperature
of the second cylinder group, Tsteam,2. As can be seen the predicted output dryness of
both models overlap.

The step responses for other changes in inputs and states were also computed,
but no significant deviations from the original model were identified. The obtained
reduced order model is thus an accurate representation of the original full order dryer
model.
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Figure 6.5 Responses of the measured dryness to a step increase of the steam pressure (and thus
temperature) of the second cylinder group as computed by both the original and reduced order
model. The top figure displays the response for the dryness at the end of the dryer section, the
bottom picture shows the response for the dryer just after the PDR section. The increase steam
pressure for the 2nd cylinder group was 0.5 · 105Pa. The reduced order model was obtained by
reducing the number of cylinder temperature states from 54 to 25 using the POD technique.
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For the dryer case, we have managed to construct an accurate reduced order model.
The order of the reduced order model is 28 compared to 57 for the full order model.
The model order has thus been reduced by approximately 50%. Although the order
of the dryer model has been significantly reduced, the reduction in model order is
relatively minor compared to other examples in the literature (see for instance [4][8]).
The modest result is due to the fact the original order of the dryer order is relatively
low. As a result, lowering the model order by two orders of magnitude (as observed
in [4][8]) is not possible for the particular example of the dryer model.

Even though the model order has been reduced, the time to compute a full time step
with the reduced order model is 48 seconds, unchanged from the CPU time required
for a time step with the original full order model. The required CPU time is not
reduced by model reduction, because in order to compute a state update using the
reduced order model, a model evaluation of the full order model is still required (see
section 3.2).

6.4 Approximation using qLPV identification

6.4.1 Introduction

The computation time required to perform a single model evaluation (corresponding to
1 minute of production) using either the full order model or the reduced order model
is approximately 48 seconds on a 1400Mhz AMD Athlon PC. As a result neither
model can be used for online state estimation using any of the techniques described
in section 2.3, as each of the described state estimation methods requires that many
model evaluations can be performed in the time between sampled measurements. To
cope with this problem we will construct a new (approximate) dryer model which has
a significantly shorter simulation time, but still retains the physical interpretable state
vector. In chapter 3 two methods were presented for this specific purpose, either by
partitioning the original large scale model (see section 3.3), or by approximating the
reduced order model with a qLPV model structure (see section 3.5).

For the dryer model partitioning is not useful, because the dryer model does not
satisfy the requirement that computing a partial state update is significantly faster than
computing the state update for all states (see equation (3.16)). This is a result of the
model structure of the dryer model. Consequently only the qLPV method described
in section 3.5 will be used to generate a computationally faster model.

The qLPV model that will be identified is of the form:

fid(xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0+
M

m=1

φm(xred ,u(k))
 
Amxred(k)+Bmu(k)+ xo f f ,m

!
, (6.25)

as proposed in (3.58). To identify this model, we will use the method as described
in section 3.5. The identification of the model (6.25) will be split up into two parts.
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First matrices A0,B0, . . . ,AM,BM and vectors xo f f ,0, . . .xo f f ,M will be identified as has
been described in section 3.5.2. Then in the second step the scheduling functions
φ1(x(k),u(k)), . . . ,φM(x(k),u(k)) will be determined using the methodology described
in section 3.5.3.

In order to identify the model (6.25), we will use the same 16.500 points of data
that were used for model reduction. It is assumed that this data covers the entire
operational envelope in which the identified model is to be used in practice.

6.4.2 Identification of A0,B0,x0, . . . ,AM,BM,xo f f ,M

The methodology outlined in section 3.5.2 to identify matrices A 0,B0, . . . ,AM,BM and
vectors xo f f ,0, . . .xo f f ,M consists of three steps:

1. Determine A0,B0,xo f f ,0 such that the model given by A0,B0,xo f f ,0 is the best
linear model for the available simulation data.

2. Determine the matrices Al
1,B

l
1,x

l
o f f ,1, . . .A

l
N ,Bl

N ,xl
o f f ,N and coefficients

β l
1(k), . . . ,β

l
N(k) of a long intermediate LPV expansion f long

id (·) of the form:

f long
id (xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0+

N
m=1

β l
m(k)

�
Al

mxred(k)+Bl
mu(k)+ xl

o f f ,m

�
(6.26)

such that the resulting expansion matches the reduced order model f red(·) for
all (xred(k),u(k)) ∈ ZN :

fred(xred(k),u(k)) = f long
id (xred(k),u(k)) ∀ (xred(k),u(k)) ∈ ZN . (6.27)

3. Finally, use the previously computed expansion f long
id (·) to compute a shorter

expansion f short
id (·) of the form:

f short
id (xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0+

M
m=1

βm(k)
 
Amxred(k)+Bmu(k)+ xo f f ,m

!
(6.28)

with M << N. For this new expansion f short
id (·) new matrices A1,B1, . . . ,AM,BM

and coefficients β1(k), . . . ,βM(k) will be computed such that for the available
simulation data ZN the prediction error of the new shorter expansion is lower
than an user-defined threshold α :�N

k=1 ‖ fred(xred(k),u(k))− f short
id (xred(k),u(k))‖2�N

k=1 ‖ fred(xred(k),u(k))‖2
< α , (6.29)

with α some chosen small value, for instance α = 0.01.
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In the first step of the identification procedure we use the data to estimate an affine
model of the form:

xred(k+1) = A0xred(k)+B0u(k)+ xoff,0. (6.30)

As described in section 3.5.2, system matrices A0, B0 and offset vector xo f f ,0 can be
determined by minimizing the least squares criterion (3.63).

The second step in the identification is to construct a long intermediate qLPV
model f long

id (·) that perfectly matches all data points in the available simulation data.
The matrices Al

1,B
l
1, . . . ,A

l
N ,Bl

N and vectors xl
o f f ,1, . . . ,x

l
o f f ,N of this expansion are

constructed by linearizing the available dryer model (6.21) at every datapoint, see
Proposition 3.5. Due to computer constraints, we chose to construct the intermediate
model (6.26) only for every 10th data point. The to the nature of the process, we
assume that only using every 10th point will not significantly affect the results.

In the third step, we use the computed long intermediate model to compute a
shorter qLPV model f short

id (·) (see (6.28)) with the final matrices A0,B0, . . . ,AM,BM

and vectors xo f f ,0, . . .xo f f ,M . This model is constructed using Procedure 3.6.
Here the number of component models is chosen to be M = 25. The number

of component models has been determined by evaluating the relative error criterion
(6.29) for increasing values of M, see Figure 6.6. As can be seen in the Figure, the
relative prediction error (6.29) decreases rapidly until approximately M = 25. For
M > 25, the decrease in the relative prediction error is less pronounced. We thus
choose M = 25, as a compromise between the complexity of the qLPV model and the
attainable accuracy of the qLPV model.

6.4.3 Identification of scheduling functions φi(x(k),u(k),θi)

In the previous section we have constructed the matrices A 0,B0, . . . ,AM,BM and vec-
tors xo f f ,0, . . . ,xo f f ,M, such that criterion (6.29) is satisfied. To satisfy this criterion,
we used coefficients β1(k), . . . ,βM(k), that have be computed according to (3.86).
These coefficients β1(k), . . . ,βM(k) are data dependent. In this section we will con-
struct scheduling functions φi(x(k),u(k),θi) for i = 1 . . .M to replace the coefficients
β1(k), . . . ,βM(k). In order to construct the scheduling functions φ i(x(k),u(k),θi), we
will use the methodology described in section 3.5.3.

The proposed methodology in section 3.5.3 to determine the scheduling functions
φi(x(k),u(k),θi) consists of two main steps:

1. Determine a suitable model structure for the functions φ i(x(k),u(k),θi);

2. Determine parameter vectors θ i such that the resulting qLPV model minimizes
the quadratic criterion (3.92).

To select an appropriatemodel structure for the scheduling functions φ i(x(k),u(k),θi)
some knowledge of the process is required. Specifically, we need to know which states
and inputs are mainly responsible for the nonlinearities of the system.

For the dryer model, step response experiments show that the main states that
cause the nonlinear behavior of the dryer model are:
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Figure 6.6 Relative error (6.29) of the shorter qLPV model f short
id (·) as a function of the number

of component models M. The relative errors rapidly decreases until approximately M = 25. The
rate at which the relative prediction errors decreases is slower for larger values of M.

• input dryness, din(k),

• correction factors for heat transfer, cPDR(k) and cADR(k)),

• machine speed, vpap(k),

• first five POD cylinder temperature states (xred,1, . . . ,xred,5).

Of these, the input dryness has the largest impact on the behavior of the dryer process.
The effect of the other listed states on the process behavior is relatively minor. In
order to select an appropriate structure for the functions φ i(x(k),u(k),θi), section 3.5.3
suggests plotting the coefficients βi(k) as a function of the selected states. An example
of such a plot is given in Figure 6.7. In Figure 6.7, β 2(k) is plotted as a function of
din(k). Unfortunately, the Figure does not clearly indicate how the structure of the
functions φi(x(k),u(k),θi) should be chosen.

The following model structure for the functions φ i(x(k),u(k),θi) has been se-
lected:

φi(xred(k),u(k),θi) =

[1 din(k) din(k)2 cPDR(k) cADR(k) xred,1(k) . . . xred,5,vpap(k)]θi, (6.31)

with θi ∈ R
11×1 a parameter vector that is yet to be determined. The motivation for

choosing this model structure is:
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Figure 6.7 Scatter plot of coefficients β2(k) as a function of din(k). As can be seen there is no
obvious relation between the coefficients β2(k) and din(k).

• Model structure is affine in states
cPDR(k),cADR(k),vpap(k),xred,1(k), . . . ,xred,5(k). Since the nonlinear behavior
of the process is not strongly influenced by these states, a simple affine model
structure is chosen. Quadratic or higher order terms are not expected to result
in significantly better models and are thus omitted. The advantage of using an
affine model above a linear model is that offsets can be modelled.

• Model structure is quadratic in the input dryness din(k). Since the proposes
scheduling function (6.31) also contains a quadratic term for d in(k), the schedul-
ing function should be better equipped describe the effect on changes in behav-
ior better than using just a linear term.

• Model is linear in θi. This means that the parameters θi can be estimated by
solving a linear least squares problem.

Now that we have a model structure for the scheduling functions φ i(x(k),u(k),θi),
all that remains is to determine the parameter vectors θ i. These parameters θi are
estimated by minimizing the prediction error of the total model (6.25) as a function of
θi:

θ1, . . . ,θM =

arg min
θ̃1,...,θ̃M

1
N

N
k=1

"" fred(xred(k),u(k))− fid(xred(k),u(k), θ̃1, . . . , θ̃M)
""2

, (6.32)
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with fid(·) defined as in (6.25):

fid(xred(k),u(k),θ1, . . . ,θM) = A0xred(k)+B0u(k)+ xo f f ,0

+
M

m=1

φm(xred(k),u(k),θm)
 
Amxred(k)+Bmu(k)+ xo f f ,m

!
, (6.33)

with Am,Bm,xo f f ,m as determined in section 6.4.2. Because our chosen model struc-
ture for φi(x(k),u(k),θi) is linear in θi, problem (6.33) is a linear least squares mini-
mization problem which can be solved efficiently.

Due to computer memory constraints we did not use the complete dataset of
16.500 points. Instead only 2200 datapoints were used to determine the parameter
vectors θi.

6.4.4 Accuracy of the qLPV model

To determine the accuracy of the constructed qLPV model, we introduce the following
averaged quadratic error measure:

E =
1
N

N
k=1

‖ fred(xred(k),u(k))− fid(xred(k),u(k))‖2 . (6.34)

Table 6.3 contains the average quadratic error E of the constructed qLPV model.
The average quadratic error is provided using both the 2200 point data set that was
used to determine the parametervectors θ i, as well as using a new data set consisting
of 800 points. For reference this table also gives the average quadratic error E for a
simple affine model given by:

fid(xred(k),u(k)) = A0xred(k)+B0u(k)+ xo f f ,0, (6.35)

with matrices A0,B0 and vector xo f f ,0 as determined in section 6.4.2.
For the estimation data (the data that has also been used to determine the parameter

vectors θi), the quadratic error for the qLPV model is about 10% lower than that of
the simpler affine model. For the validation data the qLPV model is approximately
6% more accurate.

While the qLPV model is more accurate than the affine model, the improvement
in accuracy is relatively modest. This is because in the considered operating regime
the behavior of the dryer model is quite close to the behavior of a linear model.

Apart from an absolute error measure such as (6.34) we can also express the qual-
ity of the estimated linear and qLPV models using a relative error measure. For this
purpose, consider the following relative error measure:

Erel =
1
N

�N
k=1 ‖ fred(xred(k),u(k))− fid(xred(k),u(k))‖2

1
N

�N
k=1 ‖ fred(xred(k),u(k))‖2 . (6.36)
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Table 6.3 Average quadratic error E (see (6.34)) of the identified quasi-LPV model. Estimation
data contained 2200 elements that were used to determine parameter vectors θi, validation data
set consisted 800 new points. For reference, the average quadratic error E of the linear model
fid(xred(k),u(k)) = A0(θ )xred(k)+B0(θ )u(k)+xo f f ,0 is also provided.

Linear quasi LPV

Estimation data 2.84 2.55
Validation data 3.27 3.09

Table 6.4 Relative errors Erel (see 6.36) of the identified quasi-LPV model. Estimation
data contained 2200 elements that were used to determine parameter vectors θi, validation
data set consisted 800 new points. For reference, the relative error Erel of the linear model
fid(xred(k),u(k)) = A0(θ )xred(k)+B0(θ )u(k)+xo f f ,0 is also provided.

Linear quasi LPV

Estimation data 6.1 ·10−3 5.5 ·10−3

Validation data 7.0 ·10−3 6.7 ·10−3

The numerator of the relative error is exactly the same as the previous quadratic error,
but in the relative error the quadratic errors is divided by 1

N

�N
k=1 ‖ fred(xred(k),u(k))‖2.

The resulting relative error thus represents the prediction error of the identified model
as a fraction of the fluctuations of the original model.

The relative errors Erel for both the linear model and the qLPV model are given
in Table 6.4. As can be seen in the table, both models are able to approximate the
original reduced order model to within 1%.

6.5 Construction of a Kalman filter without noise in-
formation

In our dryer model both the covariances of the disturbances in the state and measure-
ment equations are known, because we chose the values for these matrices. As a result,
we have all the information required to construct a state filter.

In practice however, the covariances matrices of process disturbances and mea-
surement noises are often not available. When there is no noise covariance informa-
tion available, it is no longer possible to design a state filter. For those situations in
which there is no noise information available, we can use the techniques developed
in chapter 4 to construct a Kalman filter using only measurement u(k),y(k). In this
section we will thus apply the techniques discussed in chapter 4 to the dryer model.

The techniques in chapter 4 require that the process model is linear. This is not
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the case for our dryer model. So instead of using the dryer model, we will use a linear
dryer model. The linear model that will be used has the following form:

xred(k+1) = A0xred(k)+B0u(k)+ xoff,0 +w(k) (6.37)

y(k) = C0xred(k)+D0u(k)+ yoff,0 + v(k), (6.38)

in which w(k) and v(k) have the same covariance matrices Q and R as in the nonlin-
ear dryer model. The matrices A0, B0, C0 and D0 and offset vectors xoff,0,yoff,0 are
identified using a least squares criterion:

[A0,B0,xoff,0] =

arg min
A,B,x0

N
k=1

‖ fred(xred(k),u(k))−Axred(k)−Bu(k)− x0‖2 (6.39)

[C0,D0,yoff,0] =

arg min
C,D,y0

N
k=1

‖hred(xred(k),u(k))−Cxred −Du(k)− y0‖2. (6.40)

The data for this identification are again the set of 16.500 data elements, that have also
been used for model reduction in section 6.3 and for the qLPV identification in section
6.4. As a result, the matrices A0,B0 and offset vector xo f f ,0 are the same matrices and
vector that were identified in the previous section.

Using a linear model instead of a nonlinear model will likely not affect the accu-
racy of the state estimation by much in this particular case. As we already discussed
in section 6.4.4, a linear model can capture over 99% percent of the dryer model dy-
namics.

The identification method as described in chapter 4 constructs a Kalman filter
from N data samples u(k),y(k) generated by the noisy system. Using the process
model we thus generate N = 600 measurements. Using this data we will first construct
an approximate filter using the unmodified technique by Mehra [66], as outlined in
section 4.2.3. Then we will investigate if it is possible to construct a more accurate
filter using the suggested improved technique in section 4.3.

For both techniques in sections 4.2.3 and 4.3 the first required step to compute the
approximate Kalman filter is to estimate the covariance function Rys(k) of ys(k), with
ys(k) the stochastic part of the measurements. The stochastic part of the measurements
can be (approximately) computed from y(k) using (4.30). To estimate the covariance
of ys(k) we have used the N4SID algorithm [93]. To construct a Kalman filter using
the unmodified Mehra technique, the estimated covariance function R̂ys(k) is in turn
used to construct the estimated covariance matrix M̂ using (4.37). Using the estimated
covariance matrix M̂, an approximate Kalman filter is constructed, by substituting M̂
for M and R̂ys(0) for Rys(0) in (4.22). The filter obtained in this manner unfortunately
turned out to be unstable.
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Table 6.5 Singular values of the observability matrix of the linearized reduced order dryer
model

i 1 2 3 4 5 6 · · · 28

σi 4.02 0.63 0.0233 0.0088 0.0054 0.0023 2.8 ·10 −13

The unstable behavior of the filter might be caused by the poor observability of the
system. Recall from section 4.3 that for a poorly observable system even very small
errors in the estimated covariance function R̂ys(k) can lead to large estimation errors
in M̂ which in turn will most likely result in a poor state filter. To investigate if this is
indeed the case, the singular values of the observability matrix have been computed.
The computed singular values are listed in Table 6.5. From this table we see that
the system is indeed poorly observable. After the third singular value, the remaining
singular values of the system are close to zero.

Given the poor observability of the system, it is likely that better results can be
obtained using the improved covariance method presented in section 4.3. The singular
values in Table 6.5 suggest that better results could likely be obtained using only the
first two (or possibly three) observable directions of x(k), corresponding to the first
two (or three) largest singular values of the observability matrix.

For this particular example however it turned out that the improved procedure by
itself was not enough to obtain a stable approximate Kalman filter. Independent of
the number of observable modes used to construct the filter, the resulting filter was
unstable, causing the estimation errors to increase exponentially for increasing time k.
Possible reasons for the instability of the constructed filters are given in section 4.5.
In a nutshell, section 4.5 lists two possible reasons why the filters constructed using
the methods of section 4.3 can become unstable:

• R̂ys(0) is underestimated.

• By using only a subset of all observable directions, the poles of the resulting
filter move outside the unit circle.

Section 4.5 suggests that both causes can be resolved by intentionally using an over-
estimated R̂ys(0) and using (1− ε)A in combination with the reduced order method
from 4.3. Indeed, using 2R̂ys(0) instead of R̂ys(0) and 0.97A instead of A in (4.22)
stable state estimators could be constructed.

To evaluate the accuracy of both Mehra’s direct covariance method as well as the
improved covariance method (including the stabilizing adjustments just described),
a new data set is generated that consists of 2000 inputs u(k), states x(k) and mea-
surements y(k). The average accuracy of both state predictions x̂(k|k− 1) and state
estimates x̂(k|k) has been determined. The prediction and estimation accuracies are



156 6 Case study: Dryer section of paper production machine

expressed using the following error measures:

Epred =
1

2000

2000
k=1

‖x(k)− x̂(k|k−1)‖2, (6.41)

Eest =
1

2000

2000
k=1

‖x(k)− x̂(k|k)‖2. (6.42)

For reference the estimation and prediction accuracy of the optimal Kalman filter is
also computed. The results of each filter can be found in Table 6.6. In the table l
denotes the number of observable directions that are used to construct Ml (see (4.52))
in the improved algorithm described section 4.3.

Recall that Mehra’s unmodified covariance method results in an unstable filter.
This translates into a huge estimation error. When we computed the singular values
for the observability matrix, we predicted that a better filter can be constructed when
only the first two observable directions (i.e. l = 2) of M are used to construct a Kalman
filter. In Table 6.6 we see that the filter constructed using just the first two observable
directions in M indeed results in a better filter.

To illustrate the effect of choosing the number of observable modes in M either
too high or too low, Kalman filters are also constructed using the improved method
using l = 0, . . . ,8 observable directions to construct Ml . The accuracy of each of these
filters is given in Table 6.6 as well. The results show that choosing l too low decreases
the filters accuracy, because a significant amount of information contained in M is not
utilized. The results for l ≥ 4 illustrate that if l is chosen too high, filter accuracy
decreases because Ml cannot be determined accurately enough. No results are given
for l = 3, because for l = 3 the approximate Kalman filter becomes unstable.

6.6 State estimation

In this section we will perform the most important part of the case-study; we will test
the accuracy with which it is possible to estimate the state x(k) of the dryer section
model using only known input signals u(k) and output measurements y(k).

In order to judge the accuracy of the state estimates we will only test the monitor-
ing algorithms using simulated data generated by the full-order dryer model. The test
data consisted of 120 minutes of simulated production, resulting in 120 input vectors
u(k), true states x(k) and measurement y(k). An advantage of using simulated data
instead of practical data is that using simulated data the exact true state of the system
is known, allowing us to compare the estimated state with the actual values. Also by
generating data with a known model, complicating issues such as model mismatch can
be avoided.

To estimate the state of the dryer section, three filters have been constructed:

1. A nonlinear Unscented Kalman Filter based on the reduced order nonlinear
dryer model (6.21)-(6.23);
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Table 6.6 Average state prediction (Epred - see (6.41)) and estimation errors (Eest - see (6.42))
of the approximate Kalman filters constructed using Mehra’s direct covariance method and
the improved estimator of section 4.3. For the improved estimator l denotes the number of
observable directions that are used to construct Ml (see 4.52). For reference the results of the
optimal Kalman filter for the dryer model are also given.

Filter Average prediction error Average estimation error
Epred Eest

Kalman (Q, R, known) 15.49 15.41
Unmodified covariance 3.5 ·1026 2.0 ·1026

Improved (l = 0) 78.52 78.52
Improved (l = 1) 72.13 50.85
Improved (l = 2) 27.94 34.13
Improved (l = 3) - -
Improved (l = 4) 32.10 35.28
Improved (l = 5) 90.23 95.66
Improved (l = 6) 425.69 433.28
Improved (l = 7) 387.88 395.51
Improved (l = 8) 1469.2 1505.8

2. A nonlinear Unscented Kalman Filter using the identified qLPV model (see
section 6.4) as state equation and using (6.38) as output equation;

3. A linear Kalman filter model based on the identified linear model (6.37)-(6.38)
for the dryer section.

In theory the first filter should be able to provide the best result of all filters, since
the model used should be the most accurate. The only modelling errors in the model
used for estimation are the errors introduced by model reduction, which were already
verified to be negligible (see section 6.3). Although the filter should provide the best
results, the computation time required for this filter is expected to be much larger than
the simulated interval, making online implementation of this filter impossible.

Like the first filter, the second filter is based on a nonlinear state equation. How-
ever, instead of using the reduced order state model, this filter uses the qLPV state
model identified in section 6.4. Although this alone would already greatly speed up
computations in the UKF, experiments showed that the CPU required to perform a
prediction and correction step in the UKF, would still require too much CPU time for
online implementation. The CPU time per estimate is still too high because the output
model still contains the TNO dryer model (see 6.2.6). To obtain a filter that can be
implemented online the measurement equation for the UKF filter has been replaced
by the identified linear output model (6.38). Because both the state and measurement
equations contain minor errors, the resulting filter is expected to be less accurate than
the filter based on the reduced order model.

The final filter that is used is a linear filter. The linear model used for this filter
is the identified linear state-space model that was also used in section 6.5. The main
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reason for including this model in the case study is to investigate if the use of a non-
linear dryer model for the dryer section results in a significant increase in estimation
accuracy.

For both the linear filter and the filter using the qLPV model, the filter model does
not perfectly describe the data. In order to construct a more robust state filter we used
the stochastic embedding technique described in section 2.3.4 to obtain a state filter.
For the qLPV model this means that we have modelled the error werr(k) (see (2.81)-
(2.82)) of the qLPV model as an additional zero mean Gaussian white noise process.
The covariance QqLPV of the additional process noise was determined experimentally
via:

QqLPV =
1
N

N
k=1

ζ (k)ζ (k)T , with (6.43)

ζ (k) = fred(xred(k),u(k),w(k))− fqLPV (xred(k),u(k),w(k)). (6.44)

Since the measurement equation was also altered, the stochastic embedding technique
was also used to obtain a robust filter with respect to the errors in the measurement
equation.

The estimation results for all filters including the approximate CPU time for each
filter is presented in Table 6.7. The accuracy of each filter for (a part of) the state
estimate is expressed in the average squared error:

Eest (x) =
1

120

120
k=1

‖x(k)− x̂(k|k)‖2. (6.45)

Comparing the total state estimation error of each filter, we see that as expected the
filter using the reduced order dryer model (6.21)-(6.23) results in the best estimates.
This was to be expected since this filter uses virtually the same model that was used to
generate the estimation data. The error of the qLPV based filter is relatively close to
that of the reduced order model filter, the error of the linear filter is twice as large as
the filter using the reduced order model. The reason that the qLPV model is more ac-
curate than the linear model is because the qLPV model better describes the nonlinear
behavior of the plant.

Table 6.7 also lists the average state estimation errors for parts of the state. The er-
rors for the cylinder temperaturesTcil,1...54 and the after-dryer correction factor cADR(k)
again show that best results were obtained using the reduced order model, that the
qLPV model results are relatively close and that the linear model performs the worst.
For the input dryness din and the pre-dryer correction factor cPDR the results are un-
expected. Here we see that the results of the filter using the reduced order model are
actually not as good as those of the qLPV and linear models. Since the difference in
estimation accuracy is relatively minor, this can likely be resolved by tuning the UKF
filter.

Finally, Table 6.7 also lists the amount of CPU time required to produce the filter
estimates. The filter using the reduced order model needs more than 3 days to process
120 minutes of data. This obviously means that online implementation of this filter is
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Table 6.7 Average state estimation errors for the dryer section. Average estimation errors E(·)
are computed over a single data set consisting of 120 measurements (thus corresponding to 120
minutes of production).

Red. order qLPV state model Lin. state
dryer model and lin. output model and output model

Eest (x) 10.44 12.99 20.27
Eest (Tcil,1...54) 10.07 12.93 20.24

Eest(din) 2.37 ·10−5 1.48 ·10−5 2.08 ·10−5

Eest(cpdr) 37.1 ·10−2 5.73 ·10−2 3.22 ·10−2

Eest (cadr) 7.32 ·10−4 10.2 ·10−4 23.0 ·10−4

CPU time: ∼ 3 days 25.5 sec. 3.9 sec.

not possible. In contrast, the filters using the qLPV and linear models only required
25.5 en 3.9 seconds to produce the required estimates. This means that the required
CPU time to compute the estimates has decreased by a factor of 104 for the qLPV
model and a factor 6 ·104 for the linear model. As a result, both filters could easily be
implemented online.

6.7 Model selection

In this section we will demonstrate the effectiveness of the model selection procedure
that was introduced in chapter 6. To test the model selection procedure, we will not
use the nonlinear dryer model, but instead we will again use the linear dryer model
that was also used in the previous section. The motivation for using the linear dryer
model instead of the nonlinear dryer model is that state estimation results for the linear
model are very similar to the results of the nonlinear model, but estimation results can
be computed in a fraction of the time (see also Table 6.7).

In order to use the linear dryer model to test the model selection procedure we
need to extend the linear dryer model with an extra state (or time dependent param-
eter) that could affect the model behavior in such a way that it would affect the state
estimation of the model. For this purpose we have extended the linear dryer model
with an additional state xb(k). The extra state xb(k) represents a possible bias in the
measurements. Ignoring a bias in measurements will likely lead to erroneous state
estimates. We assume that the true behavior of the bias is unknown.

To estimate the bias state we will introduce two models. In the first model the bias
state xb(k) is assumed constant:

xb(k+1) = xb(k). (6.46)

In the second model the bias state is assume to be a random walk:

xb(k+1) = xb(k)+wb(k), (6.47)
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with wb(k) a zero mean Gaussian white noise, with covariance Qb = 1. It is important
to realize that these models do not necessarily correspond to the actual behavior of the
bias state xb(k).

The linear dryer model can be easily extended with the bias states. The state
equation for the extended linear model is of the form:


xred(k+1)
xb(k+1)

�
=



A0 0
0 1

�

xred(k)
xb(k)

�

+



B0

0

�
u(k)+



x0

0

�
+



w(k)
wb(k)

�
. (6.48)

For the constant bias model we use wb(k) = 0 and for the random walk bias we assume
that wb(k) is a zero mean Gaussian white noise, with covariance Qb = 1.

The measurement equation of the extended model is:

y(k) =



C0



1
1

� �

xred(k)
xb(k)

�
+D0u(k)+ y0 + v(k). (6.49)

Note that the extension of the dryer model using the bias states is just one possible
extension. Other extensions could also have been used to test the selection procedure.
However this particular extension has the advantage the the resulting model remains
linear.

Now that the linear dryer model has been extended with both models for the bias
state xb(k), the state of the system along with the bias state can be estimated using the
usual Kalman filter equations.

The accuracy of the state estimation results will be dependent on how suitable each
of the bias models is for estimating the bias state xb(k). In this simulation example we
will estimate the state of the system using the following techniques:

1. A Kalman filter using the extended model in which xb(k) = 0.833 is constant,
so wb(k) = 0.

2. A Kalman filter using the extended model in which xb(k) is modelled as a
random walk, so wb(k) is a zero mean Gaussian white noise with covariance
Qb = 1.

3. The state of the system is estimated using the two previous Kalman filters (op-
tions 1 and 2). Then Procedure 5.8 is used to determine best estimation model.

4. A Kalman filter in which the correct values for xb(k) are given. For this filter
only the original states x(k) have to be estimated.

Given these four filters, the best estimation results are expected using the fourth filter,
for which the sequence xb(k) is given. This filter will only serve to provide an upper
limit on achievable estimation accuracy.

The estimation data consists of 1000 points generated with the linear model in
which the bias state xb(k) = 0 for k < 333, xb(k) = 0.25 for 334≤ k < 667 and xb(k) =
0 for k ≥ 667 (see also Figure 6.8).
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Figure 6.8 Estimated values for the bias state xb(k) in (6.48) and (6.49). The model for the
bias state is either a constant (see 6.46), a random walk (see 6.47) or both models are used to
estimate the state of the system and selection Procedure 5.8 is used to determine the optimal
model online.

The quality of the estimated estimated states will be assessed using the following
error criterion:

E =
1000
k=1

1
1000

(x̂(k|k)− x(k))T (x̂(k|k)− x(k)). (6.50)

The results are averaged over 20 simulation runs. The results for each of the estimation
scenarios is summarized in Table 6.8.

The estimation results using a fixed model for xb(k) are very poor. Ignoring the
change in the bias state xb(k) results in a large bias in the estimation results of x(k).

The results using a random walk model for xb(k) are better than when using a fixed

Table 6.8 Average state estimation errors. The state of the system has been estimated using
either a fixed bias model (6.46), a random walk bias model (6.47) or using both fixed and
random walk model and using the model selection Procedure 5.8 to determine which model to
use for state estimation. For reference the results of an optimal filter for which the values of
xb(k) were given are also included.

xb(k) fixed xb(k) random walk Selection Optimal
3539 86.4 30.7 14.2
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model for xb(k). However the estimation error using the random walk model is still
quite large compared to the results of the optimal filter for which the exact sequence
xb(k) was given. The additional error using the random walk model can be explained
if we consider Figure 6.8, in which the estimation results for the bias state x b(k) have
been plotted. Although the bias in the estimates appear reduced compared to the fixed
xb(k) model, they exhibit a large variance. The variance causes the additional error in
the state estimation results.

The results using the selection procedure are better than those of both other options
and are in fact relatively close to the results of the filter for which the exact sequence
xb(k) is given. This is because the model selection procedure uses the fixed model for
the regions in which the bias state is constant, but uses the random walk model when
the bias state jumps from 0 to 0.25 (and back). In this manner it thus combines the
low variance of the fixed model with the flexibility of the random walk model. This
is confirmed in Figure 6.8. Figure 6.8 depicts the estimation results for x b(k) of the
various filters. The selection model indeed only uses the random walk model when
xb(k) changes, and the fixed parameter model at other times.

6.8 Summary and conclusions

In this chapter we presented a simulation study in which the applicability of the various
techniques presented in the previous chapters is tested using a practical example. For
this simulation study a nonlinear model of the dryer section of a paper machine has
been used.

The dryer model was supplied by TNO Science and Industry. The model structure,
its main equations and its properties have been discussed in section 6.2. The main
properties of the dryer model are:

• Model order is equal to 57.

• The CPU time per model evaluation is approximately 48 seconds on a 1400
MHz AMD Athlon computer.

• The sample time of measurements is 60 seconds.

• The model is (mildly) nonlinear in operating regime.

In section 6.3 we use the POD model reduction technique to reduce the order of
the model. We managed to reduce the order of the dryer model from 57 to 28, but, as
expected, the CPU time per model evaluation has not been reduced.

The dryer model requires too much CPU time per model evaluation to be used for
online nonlinear state estimation. An approximate model for the dryer model that can
be evaluated much faster is constructed in section 6.4. Specifically, a model that has a
qLPV model structure is identified. The resulting qLPV model is a good approxima-
tion of the dryer model. Compared to the accuracy of a linear approximation to the
dryer model, the accuracy of the qLPV model is only 6-10% better. It is argued that
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the main reason for the limited increase in accuracy is that the dryer section model is
almost linear, such that big improvements were not to be expected.

In section 6.5 we tested the techniques introduced in chapter 4 for constructing a
Kalman filter without covariance information. Techniques are tested using a linear ap-
proximation of the dryer section model. From the singular values of its observability
matrix it is clear that this linear model is poorly observable. As a result a direct appli-
cation of Mehra’s covariance method results in poor state estimates. Better results are
obtained if a Kalman filter is constructed using only the state directions corresponding
to the largest singular values of the observability matrix, as described in the improved
technique introduced in section 4.3.

In section 6.6 the state of the dryer section model is estimated using the reduced
order model, the identified qLPV model and a linear model of the dryer section. Using
each of the models, it is possible to accurately estimate the state of the system. It is
however important to note that the state estimates using the qLPV model or the linear
model can be computed approximately 104 times faster than when the reduced order
dryer model is used.

The linear dryer model is extended with additional bias states in section 6.7. To
estimate the bias states two candidate models are given. The model selection technique
described in chapter 5 is used to determine online which model is optimal for state
estimation. Results using model selection are better than the results of each of the
candidate models alone.

As a final conclusion for this simulation study, we would like to note that, even
though we obtained satisfying results, the relatively low complexity of the dryer sec-
tion model has not allowed us to demonstrate the full extent of the methods developed
in this thesis. Indeed, the results for the model reduction would have been more illus-
trative if the order of the dryer model had been higher. If the model nonlinearities had
been more pronounced, it would have constituted a better test for the qLPV approxi-
mation technique.





Chapter 7

Conclusions and
recommendations

7.1 Conclusions

This thesis has aimed to contribute to the development of computationally feasible
methods for the efficient use of large scale physical models in model based monitoring,
fault detection and control of industrial processes.

In the introduction we have identified four properties of large scale first principles
models that prevent the development of such methods. These properties are:

• The state dimension of models is very large.

• The simulation time of models is of the same order as the sampling interval.

• The models often lack description of disturbances and measurement noise.

• The models may need to be recalibrated during operation.

This thesis has addressed each of these obstacles. The main results and conclu-
sions of the thesis are summarized below.

Since the goal of the thesis mainly pertains monitoring, the first section of Chapter
2 contains a survey of currently used state estimation methods for nonlinear systems.
The main conclusions of this survey are:

• State estimation techniques for nonlinear systems can be divided into four main
categories: techniques based on the Extended Kalman Filter equations, tech-
niques that approximately implement the Best Linear Unbiased Estimate (BLUE),
techniques based on the least squares formulation of the state estimation prob-
lem and techniques that approximately compute the Bayes estimate.

• All state estimation methods for nonlinear methods will generally require many
model evaluations.

165
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To address the problem of models with large state dimensions, the second part of chap-
ter 2 describes two projection based model reduction techniques from the literature:
Proper Orthogonal Decomposition (POD) and Balancing. The main conclusion from
this section is:

• Projection based model reduction techniques such as Balancing or POD can
often reduce the order of a large scale first principles model by orders of mag-
nitude.

Chapter 3 addresses the problem that the simulation time per model evaluation of
a first principles process model can be of the same order of magnitude as the sampling
interval. This prevents the use of such models for online state estimation. This prob-
lem can be solved by introducing methods that can be used to generate a new model,
approximating the behavior of the original model, but requiring far less simulation
time per model evaluation. Main results and conclusions of this chapter are:

• For nonlinear systems, model reduction alone does not necessarily result in a re-
duced simulation time per model evaluation. (For linear systems the simulation
time per model evaluation is automatically reduced by model reduction.)

• We introduced a method that approximates a nonlinear model by only comput-
ing the state update for a part of the state vector. A linear estimator is used to ap-
proximately compute the state update for the remaining states. It was shown that
the accuracy of the states computed using the linear estimator can be improved
by using the averaged spatial covariance (the covariance between different ele-
ments of the state vector at the same time instant) and temporal covariances (the
covariance between current states and previous states and inputs).

• We introduced a second technique that approximates the known (reduced order)
first principles model with a model that has the quasi-LPV model structure. The
quasi-LPV model is identified using data generated by the first principles model.
It was shown that the component linear models for this qLPV model structure
can be efficiently computed using a singular value decomposition.

Chapter 4 considers the problem of designing a Kalman filter when the normally
required covariance information is not available, and the available model is poorly
observable. A system is called poorly observable when the observability matrix is
near singular. We consider Mehra’s covariance method which identifies the lacking
information using input-output data collected from the real-life system. The main
results for this chapter are:

• After an analysis of Mehra’s direct covariance method it has been shown that
the method can be sensitive to estimation errors induced by the identification of
the missing statistical properties. Poor results are especially likely for poorly
observable systems (systems for which the observability matrix is nearly singu-
lar).
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• We introduced an improvement to Mehra’s covariance method that is more ro-
bust to estimation errors. The improved method achieves this by only using
those state directions for filter design, that correspond to the largest singular
values of the observability matrix. For the remaining state directions a separate
estimator has been developed.

During monitoring it may be necessary to recalibrate the process model. The prob-
lem of determining when to recalibrate the process model can be considered a model
selection problem. Chapter 5 discussed a new method for online model selection for
the purpose of state estimation. The main results of this chapter are:

• We derived a new version of the classical FPE model selection criterion for
models whose parameters have been estimated by solving a weighted and regu-
larized least squares problem.

• A procedure was developed to apply the new FPE model selection criterion to
determine online the optimal model for state estimation.

• We analyzed the false alarm and detection probabilities of the new online filter
model selection procedure for the special case of linear models.

Finally in chapter 6, the methodologies of the preceding chapters have been tested
in a case study. In this case study the states of a model of the dryer section of a paper
production machine were estimated.

Using the results of this thesis several problems that are associated with the de-
velopment of generally applicable monitoring algorithms can thus be overcome. As
mentioned above, computational issues have been addressed in chapters 2 and 3. The
lack of proper noise and disturbance models has been addressed in chapter 4. The
problem with model recalibration can be addressed using the model selection tech-
nique introduced in chapter 5. All these results were developed without considering
specific applications. Thus the results should be applicable to a wide range of process
models. This is illustrated by the good results that were obtained when these tech-
niques were applied in the heated plate simulation example and the dryer model case
study in chapter 6. However, given the wide range of processes found in the process
industry, the results of applying these techniques may vary. Also, the techniques pre-
sented in this thesis are not yet at the stage where they can be applied by operators
that have no background knowledge of the specific techniques.

7.2 Recommendations for future work

Although the results of the thesis as described in the previous section provide solu-
tions to some obstacles for the development of monitoring algorithms for large scale
first principles models in the process industry, there are still problems that need to be
solved. Besides these open problems there still is potential for improving the accuracy
of some of the developed methods.

Some suggestions for further study are given below:
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• The literature survey as provided in Chapter 2 revealed that currently used
model reduction techniques such as POD and Balancing, do not take into ac-
count that the reduced order model is to be used for monitoring. It would be
worth investigating if model reduction techniques could be developed for the
specific purpose of state estimation. A first step in this direction is presented in
[99].

• An important decision in state estimation for nonlinear systems is which non-
linear state estimation algorithm to use. Methodologies should be developed
that aid an user to decide which estimator to use. Important parameters for such
a methodology include a measure of the nonlinearity of the system, the time
required per model evaluation and the sampling interval.

• In chapter 3 a method has been presented to create an approximate model by
partitioning the original system (see section 3.3). Results of this section are
easily applicable if an explicit solver is used. In [4], the partitioning methods
(without the use of spatial of temporal covariances) are applied to models which
use implicit Euler solvers. It should be relatively easy to adapt the methods that
include covariance information such that they too can be applied to systems
which use implicit solvers.

• The structure of the qLPV model used to approximate the reduced order first
principles model in section 3.5 is a linear combination of state-space models.
Using linear combinations of state-space models has the drawback that the re-
sulting model can be unstable, even if all the component models themselves are
stable. This could possibly be avoided if the qLPV model would consist of a
linear combination of orthogonal basis functions instead of state-space models.
The component orthogonal basis functions could still be constructed using a
SVD.

• The main problem in the qLPV model approximation procedure is to choose an
appropriate structure for the scheduling functions φ i(xred(k),u(k),θi). It would
be worth investigating if the scheduling functions can be estimated more easily.
A possible option for determining the scheduling functions φ i(xred(k),u(k),θi)
is to try and rewrite the qLPV as a LFT model. If possible, we could determine
the scheduling functions using techniques such as described in [39], where the
static nonlinearities of a LFT model structure are identified when all linear ele-
ments are known.

• Instead of determining fixed scheduling functions φ i(xred(k),u(k),θi), it might
also be possible to model the behavior of the scheduling functions as extra
states, which are modelled as a stationary stochastic processes. These extra
states could be estimated along with the original states of the model.

• In chapter 4 it is shown that if the improved version of Mehra’s covariance
method is used to construct a Kalman filter, the number of observable directions
have to be distinguished from the nearly unobservable directions. Choosing the
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optimal number of observable directions is not an easy task and a wrong choice
can have a large effect on the accuracy of the resulting filter. It would be worth
investigating if it is possible to determine the optimal number of directions l in
an objective manner.

• For the covariance method, there is no explicit relation between the identifica-
tion errors in the required covariance matrices on the one hand and the perfor-
mance of the constructed Kalman filter on the other hand. If such an explicit
link would be available, better methods to construct a Kalman filter could likely
be derived.

• In chapter 6 the methodologies proposed in this thesis have been tested in a
case study. In the case study, a model of a dryer section of a paper machine
has been used. Due to the properties of this model (model order 57, almost
linear behavior in operating region), the full capabilities of methods such as
model reduction and approximating a known process model with a qLPV model
structure could not be fully tested. For these methods, a more challenging case
study is advisable.
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Glossary

Operators

(·)† pseudo-inverse
E(·) expectation operator
E(·) time averaged expectation (see (2.91))
tr(·) trace operator
vec(·) transforms a matrix into a vector by stacking its columns
vec−1(·) inverse vec(·) operator, transforms vector back into matrix

Greek

αc→a heat conductivity coefficient between i-th dryer and air
αc→p,i heat conductivity coefficient between i-th dryer and paper
αc→s,i heat conductivity coefficient between i-th dryer and steam
β (k) unstructured scheduling coefficient for qLPV model computed using (3.86)
γ specific heat of the cylinder
φm(·) scheduling function for the m-th component model of a LPV model
λ (T ) heat conductivity of heated plate model
µa(k) time average of a(k)
σi i-th singular value
θ parameter vector
Φ(k) autocovariance matrix of xs(k)
Σ(k) autocovariance matrix of x̂s(k)

Latin

cADR correction factor for heat transfer in after dryer section (final 22 cylinders)
cPDR correction factor for heat transfer in the pre dryer section (first 32 cylinders)
din mass fraction dry paper in the paper mixture entering the

dryer section (din = mpap/(mpap +mwater))
dout measured mass fraction of dry paper measured after

the pre- and after-dryer sections
e(k) innovations sequence
f (·) nonlinear process model
fid(·) identified approximate process model
fred(·) reduced order nonlinear process model
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f f ast(·) faster approximate reduced order process model
g mass of dry material per m2

h(·) nonlinear output model
hred reduced order nonlinear output model
h fast faster approximate reduced order output model
k discrete time index
mcil mass of a dryer cylinder
mpap mass of paper
mwater mass of water
p(a|b) conditional probability density function of a given b
u(k) input vector at time k
v(k) measurement noise at time k
vpap speed at which the paper web moves through the dryer section
w(k) process noise at time k
x(k) state vector at time k
xd(k) discrete part of the state x(k)
xs(k) stochastic part of the state x(k)
x̃red(k) approximate reduced order state, computed using Procedure 3.2
x̂(k|l) estimate for state x(k) using data Zl

xo f f ,m offset vector for m-th component model of a qLPV model
xred(k) reduced order state at time k
y(k) measurement vector at time k
yd(k) discrete part of measurement vector y(k)
ys(k) stochastic part of measurment vector y(k)
A state transition matrix of state-space model
Ac→a contact surface between a dryer cylinder and surrounding air
Ac→p contact surface between a dryer cylinder and the paper web
Ac→s contact surface between a dryer cylinder and steam heating the cylinder
Am state transition matrix of m-th component model of a qLPV model structure
B input matrix of state-space model
Bm input matrix of m-th component model of a qLPV model structure
C output matrix of state-space model
D direct feedthrough matrix of state-space model
E(·) averaged quadratic error
Err(·) averaged quadratic error
Jp(M) FPE for model M

K(k) Kalman gain at time k
M(k) cross covariance matrix between xs(k+1) and ys(k)
Mi candidate model i for model selection
O observability matrix
Px(k) autocovariance matrix of x(k)
Px(k)y(k) cross covariance matrix between x(k) and y(k)
Psteam,i pressure of saturated steam that heats the cylinders in the i-th cylinder group
Pr(a) probability that a occurs
Q(k) autocovariance matrix of process noise w(k)
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R(k) autocovariance matrix of measurement noise v(k)
Re(k) autocovariance matrix of the innovations sequence e(k)
Rys(i) autocovariance function for stochastic sequence y s(k)
T projection matrix for model reduction
Tair temperature of air surrounding the dryer section
Tcil,i temperature of the i-th dryer cylinder
Tpap,i temperature of paper surface at the i-th cylinder
Tsteam,i temperature of steam inside the i-th cylinder
V(k) filter model quality at time k (see 5.18)
V (x,k) expected prediction error given x at time k (see 5.19 )
ZN identification data [u(1),y(1), . . . ,u(N),y(N)]

Abbreviations

AIC Akaike Information Criterion
BLUE Best Linear Unbiased Estimate
CUSUM Cumulative Sum
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
FDI Fault Detection and Isolation
FPE Final Prediction Error
LFT Linear Fractional Transformation
LPV Linear Parameter Varying
MAP Maximum a posteriori
MHE Moving Horizon Estimator
ODE Ordinary Differential Equation
PDE Partial Differential Equation
POD Proper Orthogonal Decomposition
qLPV quasi-Linear Parameter Varying
RRSQRTKF Reduced Rank Square Root Kalman Filter
SPRT Sequential Probability Ratio Test
SVD Singular Value Decomposition
UKF Unscented Kalman Filter
WRLS Weighted and Regularized Least Squares





Summary

The process industry is increasingly looking for methods to increase its efficiency.
One possibility to increase the efficiency of processes is to monitor critical process
variables. Often, critical process variables are often not directly measurable. In order
to monitor the unmeasurable process variables, these parameters could be inferred us-
ing available detailed first principles models. Unfortunately, no monitoring techniques
currently exists that can infer the process variables online, due to the complexity of
the available first principles models.

This thesis has aimed to contribute to the development of computationally feasible
methods for the efficient use of large scale physical models in model based monitoring,
fault detection and control of industrial processes.

Four properties of large scale first principles models prevent the development of
such methods. These properties are:

• The state dimension of models is very large;

• The simulation time of models is of the same order as the sampling interval;

• The models often lack description of disturbances and measurement noise;

• The models may need to be recalibrated during operation.

A literature survey of currently available state estimation techniques and projec-
tion based model reduction techniques is given in chapter 2.

Chapter 3 shows that for nonlinear models, model reduction alone does not reduce
the time required to perform simulations. To reduce the required time for simulations,
two new methods are introduced to generate approximate models that require less time
per model evaluation. In the first method to generate a faster approximate model, the
process equations are only used to compute a state update for a part of the state vector.
The remaining states are then computed using linear operations. The second method
to generate an approximate process model is an identification based approach. In this
approach, data generated using the reduced order process model is used to identify a
model that has a quasi-Linear Parameter Varying (qLPV) model structure. To identify
the qLPV model, a singular value based approach is introduced that simplifies the
identification of the component models.

Chapter 4 considers the problem of designing a Kalman filter when the normally
required covariance information is not available, and the available model is poorly
observable. A system is called poorly observable when the observability matrix is
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near singular. We considered Mehra’s covariance method which identifies the lack-
ing information using input-output data collected from the real-life system. After an
analysis of Mehra’s direct covariance method it has been shown that the method can
be sensitive to estimation errors induced by the identification of the missing statistical
properties. Poor results are especially likely for poorly observable systems. We intro-
duced an improvement to Mehra’s covariance method that is more robust to estimation
errors. The improved method achieves this by only using those state directions for fil-
ter design, that correspond to the largest singular values of the observability matrix.
For the remaining state directions a separate estimator has been developed.

During monitoring it may be necessary to recalibrate the process model. The
problem of determining when to recalibrate the process model can be considered a
model selection problem. Chapter 5 discussed a new method for online model selec-
tion for the purpose of state estimation. We derived a new version of the classical
FPE model selection criterion for models whose parameters have been estimated by
solving a weighted and regularized least squares problem. Using the new selection
criterion chapter 5 introduces a new method to determine the optimal model for state
estimation online.

Finally in chapter 6, the methodologies of the preceding chapters have been tested
in a case study. In this case study the states of a model of the dryer section of a paper
production machine were estimated.

Using the results of this thesis several problems that are associated with the de-
velopment of generally applicable monitoring algorithms can thus be overcome. All
these results were developed without considering specific applications. Thus the re-
sults should be applicable to a wide range of process models. This is illustrated by
the good results that were obtained when these techniques were applied in the heated
plate simulation example and the dryer model case study in chapter 6. However, given
the wide range of processes found in the process industry, the results of applying these
techniques may vary. Also, the techniques presented in this thesis are not yet at the
stage where they can be applied by operators that have no background knowledge of
the specific techniques.



Samenvatting

De procesindustrie is voortdurend opzoek naar methodes om de efficiëntie van pro-
cessen te verhogen. Een mogelijkheid om de efficiëntie van processen te verhogen
is door het optimaliseren van de procesbesturing. Voorwaarde is dan wel dat men
cruciale procesvariabelen online kan monitoren. Jammer genoeg is het vaak niet mo-
gelijk om alle gewenste procesvariabelen online te meten. Indien het niet mogelijk is
om procesvariabelen direct te meten, is het noodzakelijk om deze varabelen te schat-
ten, door gebruik te maken van grootschalige fysische modellen. De op dit moment
gangbare schattingstechnieken kunnen echter vaak niet overweg met complexiteit van
grootschalige fysische modellen.

In dit proefschrift is gezocht naar rekentechnisch haalbare methodes die efficiënt
gebruik maken van grootschalige fysische modellen om cruciale procesvariabelen on-
line te kunnen schatten, ten behoeve van o.a. fout detectie en proces aansturing.

Grootschalige fysische modellen hebben in het algemeen eigenschappen die het
ontwikkelen van een dergelijke methodiek moeilijk maken. Vier van deze eigenschap-
pen zijn:

• de dimensie van een toestandvector in grootschalige fysische modellen is erg
hoog;

• de tijd benodigd voor een enkele simulatie stap is vaak in de zelfde orde van
grootte als de tijd tussen metingen;

• grootschalige fysische modellen bevatten geen statische beschrijving van pro-
cesverstoringen en meetruis;

• het procesmodel moet soms opnieuw gekalibreerd worden.

In hoofdstuk 2 wordt een overzicht gegeven van de huidige stand van de techniek
op het gebied van online toestandsschatters en modelreductie.

In hoofdstuk 3 wordt uitgelegd dat model reductie alleen niet automatisch leidt tot
een kortere rekentijd per simulatie stap. Om de rekentijd van complexe fysische mod-
ellen te reduceren worden er twee nieuwe methoden geïntroduceerd. In beide meth-
odes worden benaderendemodellen gemaakt, die veel minder rekentijd per modeleval-
uatie nodig hebben. Eerst wordt er een techniek gepresenteerd, waarbij het originele
procesmodel alleen nog gebruikt om slechts een deel van de toestanden te bereke-
nen. De overige toestanden worden vervolgens benaderend berekend, waarbij slechts
van lineaire operaties gebruikt wordt gemaakt. Ook bij de tweede techniek wordt een
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benaderend model gemaakt. Hier wordt echt gebruik gemaakt van technieken uit de
systeemidentificatie. Data gegenereerd met het originele model wordt gebruikt om
een model te schatten met een qLPV (quasi Lineair Parameter Varying) modelstruc-
tuur. Bij de identificatie van het qLPV model wordt een nieuwe techniek gebruikt om
submodellen binnen de qLPV structuur eenvoudig te kunnen bepalen. Deze techniek
is gebaseerd op een singuliere waarde decompositie op gelineariseerde modellen.

Voor het construeren van een Kalman filter op de gangbaremethodes is het noodza-
kelijk dat de covariantie-matrices van procesverstoringen en meetfouten bekend zijn.
Hoofdstuk 4 beschrijft methoden die in staat zijn om een Kalman filter te construeren
zonder dat deze informatie beschikbaar is. In het bijzonder wordt er gekeken naar sys-
temen die “nauwelijks” observeerbaar zijn. Een systeem is “nauwelijks” observeer-
baar als de observeerbaarheidsmatrix van het systeem bijna singulier is. In het bij-
zonder wordt er gekeken naar Mehra’s covariantie methode, waarmee de ontbrekende
covariantie informatie kan worden geïdentificeerd uit data gegenereerdmet het fysieke
systeem. Uit een analyse van de Mehra’s methode blijkt dat de methode gevoelig is
identificatiefouten indien het systeem “nauwelijks” observeerbaar is. Behalve deze
analyse wordt ook een verbeterde versie van Mehra’s covariantie methode gegeven,
die minder gevoelig is voor deze identificatiefouten. De verbeterde methode is minder
gevoelig door eerst een filter te ontwerpen dat alleen de goed observeerbare toestanden
schat. Daarna wordt een aparte schatter gegeven voor de slecht observeerbare toes-
tanden.

Gedurende het online schatten van toestanden kan het op den duur nodig zijn om
het fysische model opnieuw te kalibreren. De bepaling van het moment waarop het
model opnieuw gekalibreerd moet worden, kan geschreven worden als een model se-
lectie probleem. In hoofdstuk 5 wordt een nieuwe methode voor modelselectie voor
het schatten van toestanden gepresenteerd. Eerst wordt het bestaande FPE selectiecri-
terium generaliseerd, zodat het ook kan worden gebruikt voor schattingen bepaald
uit gewogen en geregulariseerde kleinste kwadraten problemen. Daarna wordt het
gegeneraliseerde FPE criterium gebruikt om het optimale model te selecteren voor het
schatten van toestanden.

In hoofdstuk 6 worden de resultaten uit de voorafgaande hoofdstukken getest in
een casestudy. In deze case worden de eerder afgeleide technieken toegepast op een
model van de droogsectie van een papiermachine.

Bij de afleiding van de eerder genoemde nieuwe technieken zijn nauwelijks spec-
ifieke aannamen gedaan met betrekking tot de structuur van de gebruikte modellen.
Daardoor is het mogelijk om de geïntroduceerde technieken op een diverse fysische
modellen. Dit blijkt uit goede resultaten die in dit proefschrift zijn verkregen bij tests
met het model van een verwarmde plaat en in de casestudy van de droogsectie van een
papierfabriek. In de procesindustrie worden echter vele modellen gebruikt met uiteen-
lopende eigenschappen. Deze uiteenlopende eigenschappen zouden ervoor kunnen
zorgen dat de mate van succes per toepassing varieert. Ten slotte zijn de gepresen-
teerde technieken nog niet vergenoeg gevorderd dat de technieken gebruikt kunnen
worden zonder enige kennis van de achterliggende methoden.



Curriculum Vitae

Robert Bos was born in Papendrecht, The Netherlands in 1977. He obtained his sec-
ondary eduction diploma (VWO) from the Willem de Zwijger College in 1995. In
that same year he started to study applied physics at the Delft University of Technol-
ogy. He received his MSc. degree in applied physics in 2001. For his MSc. thesis he
was awarded the “study-award”. His MSc. thesis was also selected to be one of the
finalists in the national control award.

After obtaining his MSc., he joined the Systems, Signals and Control group at the
Delft University of Technology as a PhD student. The Systems, Signals and Control
group would later merge with similar groups to form the Delft Center for Systems
and Control. In these groups he worked on the “Monitoring using large-scale first-
principles models from the process industry” project which was sponsored by TNO
Science and Industry.

Currently, he is employed at Shell International Exploration and Production as a
reservoir engineer.

191


